Question

In: Physics

A ball of mass 0.5 kg makes a head-on elastic collision with a second ball (at...


A ball of mass 0.5 kg makes a head-on elastic collision with a second ball (at rest) and rebounds with a speed equal to 0.450 its original speed. The mass of the second ball in kg

Solutions

Expert Solution

Since in elastic collision there is no loss of energy

therefore we can apply conservation of momentum on the system of two balls

Let initial velocity of ball 1 be 'v' and it is given that second ball is at the rest initially

therefore initial momentum of system before the collision , pinitial = 0.5 * v

now let after the collision the velocity of ball 1 be 'v1' and velocity of ball 2 be 'v2' and let mass of ball 2 be 'm2'.

and v1 = (-0.45)*v , negative sign is due to direction of velocity of ball 1 after collision

final momentum of system , pfinal = m2*v2 + 0.5*v1 = m2*v2 - 0.225*v

equalizing both  pinitial =  pfinal

0.5*v = m2*v2 - 0.225*v

0.725*v = m2*v2

Also applying initial kinetic energy of system = final kinetic energy of system

[1/2]*m1*[v]2 = [1/2]*m1*[v1]2 +    [1/2]*m2*[v2]2

putting m1 = 0.5 kg and using 0.725*v = m2*v2

we get on solving m2 = 1.31818 kg.


Related Solutions

A billiard ball rolling across a table at 1.45 m/s makes a head-on elastic collision with...
A billiard ball rolling across a table at 1.45 m/s makes a head-on elastic collision with an identical ball. Find the speed of each ball after the collision when each of the following occurs. (a) The second ball is initially at rest. first ball     m/s second ball     m/s (b) The second ball is moving toward the first at a speed of 1.10 m/s. first ball     m/s second ball     m/s (c) The second ball is moving away from the first at...
A body of mass 2.1 kg makes an elastic collision with another body at rest and...
A body of mass 2.1 kg makes an elastic collision with another body at rest and continues to move in the original direction but with 1/6 of its original speed. (a) What is the mass of the other body? (b) What is the speed of the two-body center of mass if the initial speed of the 2.1 kg body was 3.1 m/s?
A neutron in a nuclear reactor makes an elastic, head-on collision with the nucleus of a...
A neutron in a nuclear reactor makes an elastic, head-on collision with the nucleus of a carbon atom initially at rest. (a) What fraction of the neutron's kinetic energy is transferred to the carbon nucleus? (The mass of the carbon nucleus is about 12.0 times the mass of the neutron.) ANSWER: 0.284 (b) the initial kinetic energy of the neutron is 3.10 10-13 J. Find its final kinetic energy and the kinetic energy of the carbon nucleus after the collision.
A neutron in a nuclear reactor makes an elastic, head-on collision with the nucleus of a...
A neutron in a nuclear reactor makes an elastic, head-on collision with the nucleus of a carbon atom initially at rest. (a) What fraction of the neutron's kinetic energy is transferred to the carbon nucleus? (The mass of the carbon nucleus is about 12.0 times the mass of the neutron.) __________ b) The initial kinetic energy of the neutron is 2.70 10-13 J. Find its final kinetic energy and the kinetic energy of the carbon nucleus after the collision. neutron...
A neutron in a nuclear reactor makes an elastic, head-on collision with the nucleus of a...
A neutron in a nuclear reactor makes an elastic, head-on collision with the nucleus of a carbon atom initially at rest. (a) What fraction of the neutron's kinetic energy is transferred to the carbon nucleus? (The mass of the carbon nucleus is about 12.0 times the mass of the neutron.) (b) The initial kinetic energy of the neutron is 1.30 10-13 J. Find its final kinetic energy and the kinetic energy of the carbon nucleus after the collision. neutron J...
A moving ball (ball #1) makes a perfectly elastic collision with a stationary ball (ball #2)....
A moving ball (ball #1) makes a perfectly elastic collision with a stationary ball (ball #2). After the collision it is observed that the speed of ball #2 is five times that of ball #1. Determine the angles θ1 and θ2 that the two balls scatter as measured from the initial direction of ball #1. You may assume that the two balls have identical masses, and you may need the identity sin2(x) + cos2(x) = 1. Please explain any concepts...
Ball Collision. A ball with a mass of 0.600 kg is initially at rest. It is...
Ball Collision. A ball with a mass of 0.600 kg is initially at rest. It is struck by a second ball having a mass of 0.400 kg, initially moving with a velocity of 0.250 m/s toward the right along the x-axis. After the collision, the 0.400 kg ball has a velocity of 0.200 m/s at an angle of 36.9° above the x axis in the first quadrant. Both balls move on a frictionless, horizontal surface. Find the magnitude of the...
A pool ball moving at 5m/s makes an elastic collision with an identical ball which is...
A pool ball moving at 5m/s makes an elastic collision with an identical ball which is initially at rest. After the collision, one ball moves at an angle of 30o with respect to the original direction of motion. a) Find the direction of motion of the other ball after the collision b) Find the speed of each ball after the collision.
Two balls undergo a perfectly elastic head-on collision, with one ball initially at rest. If the...
Two balls undergo a perfectly elastic head-on collision, with one ball initially at rest. If the incoming ball has a speed of 200 m/s . What is the final speed of the incoming ball if it is much more massive than the stationary ball? Express your answer using two significant figures. What is the final speed of the stationary ball if the incoming ball is much more massive than the stationary ball? What is the final direction of the stationary...
A cue ball traveling at 4.29 m/s makes a glancing, elastic collision with a target ball...
A cue ball traveling at 4.29 m/s makes a glancing, elastic collision with a target ball of equal mass that is initially at rest. The cue ball is deflected so that it makes an angle of 30.0° with its original direction of travel. (a) Find the angle between the velocity vectors of the two balls after the collision. (b) Find the speed of each ball after the collision. - cue ball (m/s) - target ball (m/s)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT