Question

In: Math

A leaky 10-kg bucket is lifted from the ground to a height of 12 m at...

A leaky 10-kg bucket is lifted from the ground to a height of 12 m at a constant speed with a rope that weighs 0.5 kg/m. Initially the bucket contains 36 kg of water, but the water leaks at a constant rate and finishes draining just as the bucket reaches the 12-m level. Find the work done. (Use 9.8 m/s2 for g.) Show how to approximate the required work by a Riemann sum. (Let x be the height in meters above the ground. Enter xi* as xi.).

Solutions

Expert Solution


Related Solutions

Problem 10: Water is drawn from a well using a leaky bucket. Assume the following: •...
Problem 10: Water is drawn from a well using a leaky bucket. Assume the following: • The well is 23 ft deep and requires 23 ft of rope to pull the bucket to the top. • The rope weighs a total of 12 lbs. • The bucket weighs 3 lbs when empty. • The bucket holds 16 lbs of water. It is full at the bottom of the well and loses half of its water by the time it reaches...
A 10 kg rock is released from a height of 27 m. In the following answer...
A 10 kg rock is released from a height of 27 m. In the following answer boxes, enter the total mechanical energy of the rock at each of the following heights: 13.50 m, 9.00 m, 6.75 m. Neglect air-resistance in your calculations.
A projectile is fired from the ground, reaches a maximum height of 26.8 m and lands...
A projectile is fired from the ground, reaches a maximum height of 26.8 m and lands a distance of 76.7 m away from the launch point. What was the projectile s launch velocity? A) 28.2 m/s, 54.4 degrees above horizontal B) 22.9 m/s, 27.2 degrees above horizontal C) 16.4 m/s, 16.3 degrees above horizontal D) 42.3 m/s, 8.2 degrees above horizontal
A ball is tossed vertically upward from a window, height 50.0 m above the ground. The...
A ball is tossed vertically upward from a window, height 50.0 m above the ground. The initial speed of the ball is 25.0 m/s. The ball goes up and comes down, landing on the ground at the base of the building. Determine the following: a) The time it took the ball to reach its maximum height above ground. b) The maximum height above the ground. c) The time the ball returns to its initial height. d) The velocity of the...
A ball of mass 0.120 kg is dropped from rest from a height of 1.25 m....
A ball of mass 0.120 kg is dropped from rest from a height of 1.25 m. It rebounds from the floor to reach a height of 0.600 m. What impulse was given to the ball by the floor? magnitude? direction? upward or downward
a 2.00 kg ball is dropped from a height of 1.23 m and when it hits...
a 2.00 kg ball is dropped from a height of 1.23 m and when it hits the ground it receives an upward impulse of 15.7N*s. To what height does the ball bounce?
A container with mass m kg is dropped by a helicopter from height h km at...
A container with mass m kg is dropped by a helicopter from height h km at time t=0, with zero velocity. from the outset, its fall is controlled by gravity and the force of air resitance, f(v)= -kv, where v is the current velocity of the container. in t seconds after the drop, a parachute opens, resulting in an increase of air resistance up to f(v) = -kv. determine the time t at which the container touches the ground. and...
A 30 kg projectile is launched from the ground at an initial velocity of 300 m/s...
A 30 kg projectile is launched from the ground at an initial velocity of 300 m/s at an angle of 45 degrees above the horizontal. If air resistance is ignored, determine the following: a. The projectile's speed at 2000 meters above the ground. b. The total amount of energy the object has at 3000 m. c. The maximum height of the projectile. d. The maximum distance the projectile travels horizontally.
In the air above a certain area at a height of 500 m above the ground,...
In the air above a certain area at a height of 500 m above the ground, the electric field is 120 N / C directed downwards. The electric field at a height of 600 m from the ground is 100 N / C downwards. What is the average volume load density in the air layer between these two heights?
A 4.00 −kg ball is dropped from a height of 14.0 m above one end of...
A 4.00 −kg ball is dropped from a height of 14.0 m above one end of a uniform bar that pivots at its center. The bar has mass 5.50 kg and is 7.40 m in length. At the other end of the bar sits another 5.30 −kg ball, unattached to the bar. The dropped ball sticks to the bar after the collision. How high will the other ball go after the collision?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT