Question

In: Physics

Assume that the bullet is fired due East at a latitude of 40° N, velocity is...

Assume that the bullet is fired due East at a latitude of 40° N, velocity is 30 m/s, and distance from target is 10m. Find the amount by which it misses hitting the center on the target due to the Coriolis force, vertical and horizontal.

Solutions

Expert Solution

Deflection due to Coriolis force is given by ∆y = (∆x)2 Ω sin(λ) / v

Where,

∆x = distance traveled

v = speed

λ = latitude

Ω = angular velocity of the Earth (7.3x10-5 s-1 )

Putting the values,

∆y = (10)2 * 7.3x10-5 * sin (40) / 30

∆y = 15.64 * 10-5 m

∆y = 1.564 * 10-4 m

∆y = 0.156 mm.


Related Solutions

A bullet of mass m is fired from the initial ground velocity of magnitude v0 at...
A bullet of mass m is fired from the initial ground velocity of magnitude v0 at elevation angle θ0. (a) Express her momentum relative to the location of the shot as a function of time. (b) How fast does the momentum change? (c) Calculate the size vector r × F directly and compare it with the result of problem (b). Why both results are identical
A proton moving at 40 m/s due East collides with another proton at rest. Assume the...
A proton moving at 40 m/s due East collides with another proton at rest. Assume the collision is elastic and glancing. After the collision, one proton moves 30◦ south of East. Find the magnitude an direction of the other proton after the glancing collision
A proton moving at 40 m/s due East collides with another proton at rest. Assume the...
A proton moving at 40 m/s due East collides with another proton at rest. Assume the collision is elastic and glancing. After the collision, one proton moves 30◦ south of East. Find the magnitude an direction of the other proton after the glancing collision
A(n) 6.7-g bullet is fired from a gun into a 0.90-kg block of wood held in...
A(n) 6.7-g bullet is fired from a gun into a 0.90-kg block of wood held in a vise. The bullet penetrates the block to a depth of 9.00 cm. An identical block of wood (with no bullet inside) is next placed on a frictionless horizontal surface, and a second identical bullet is fired from the same gun into the block. How much smaller is the penetration depth in the second case? (Hint: The depth in the second case should be...
A bullet with a mass of 4.1g and a speed of 650m/s is fired at a...
A bullet with a mass of 4.1g and a speed of 650m/s is fired at a block of wood with a mass of 9.6*10^2kg . The block rests on a frictionless surface, and is thin enough that the bullet passes completely through it. Immediately after the bullet exits the block, the speed of the block is 22m/s . Part A What is the speed of the bullet when it exits the block? (m/s) Part B Is the final kinetic energy...
Margot is walking in a straight line from a point 40 feet due east of a...
Margot is walking in a straight line from a point 40 feet due east of a statue in a park toward a point 34 feet due north of the statue. She walks at a constant speed of 4 feet per second. (a) Write parametric equations for Margot's position t seconds after she starts walking. (Round your coefficients to four decimal places as needed.) (b) Write an expression for the distance from Margot's position to the statue at time t. (Round...
John was swimming in the river. His swimming velocity was 1.2 m/s due east. The water...
John was swimming in the river. His swimming velocity was 1.2 m/s due east. The water was running at 0.4 m/s due west. John’s projected area in the water was 0.45 m2. Water density was 1000 kg/m3. The coefficient of drag was 0.2. (a) What was John’s velocity relative to the water? (b) What was the pressure drag force from the water? After a little while, John turned around and now is swimming at 1.2 m/s due west. (c) What...
As shown in the figure below, a bullet is fired at and passes through a piece...
As shown in the figure below, a bullet is fired at and passes through a piece of target paper suspended by a massless string. The bullet has a mass m, a speed v before the collision with the target, and a speed (0.496)v after passing through the target. The collision is inelastic and during the collision, the amount of kinetic energy lost by the bullet and paper is equal to [(0.263)Kb BC] , that is, 0.263 of the kinetic energy...
A bullet with a mass m b = 11.5 g is fired into a block of...
A bullet with a mass m b = 11.5 g is fired into a block of wood at velocity v b = 265 m/s. The block is attached to a spring that has a spring constant k of 205 N/m. The block and bullet continue to move, compressing the spring by 35.0 cm before the whole system momentarily comes to a stop. Assuming that the surface on which the block is resting is frictionless, determine the mass of the wooden...
A bullet is fired through a board 10.0cm thick in such a way that the bullet’s...
A bullet is fired through a board 10.0cm thick in such a way that the bullet’s line of motion is perpendicular to the face of the board. If the initial speed of the bullet is 4.00 x 10^2 m/s and it emerges form the side of the board with a speed of 3.00 x 10^2 m/s, find (a) the acceleration of the bullet as it passes through the board and (b) the total time the bullet is in contact with...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT