Question

In: Math

ty'''+4y''=t^2cost

ty'''+4y''=t^2cost

Solutions

Expert Solution


Related Solutions

for y(t) function ty'' - ty' + ty = 0, y(0)= 0 , y'(0)= 1 solve...
for y(t) function ty'' - ty' + ty = 0, y(0)= 0 , y'(0)= 1 solve this initial value problem by using Laplace Transform. (The equation could have been given such as "y'' - y' + y = 0" but it is not. Please, be careful and solve this question step by step.) )
Given a proportional tax system (with tax rate t and T=tY), use an IS-LM diagram (with...
Given a proportional tax system (with tax rate t and T=tY), use an IS-LM diagram (with upward sloping LM function) to explain the impacts of an increase in propensity of consumption (c1) on equilibrium output, interest rate and private investment? Use an IS-LM diagram and some sentences to explain your answer.
Find the particular solution: y″−4y′+4y=(−11.5e^(2t))/(t^(2)+1)
Find the particular solution: y″−4y′+4y=(−11.5e^(2t))/(t^(2)+1)
Solve the initial value problem: Y''-4y'+4y=f(t) y(0)=-2, y'(0)=1 where f(t) { t if 0<=t<3 , t+2...
Solve the initial value problem: Y''-4y'+4y=f(t) y(0)=-2, y'(0)=1 where f(t) { t if 0<=t<3 , t+2 if t>=3 }
Solve the following differential equation: y''+4y'+4y=u(t-1)-u(t-3), y(0)=0, y'(0)=0
Solve the following differential equation: y''+4y'+4y=u(t-1)-u(t-3), y(0)=0, y'(0)=0
Suppose that y′=0.162sin2(ty)+1. Plot y(t) from t=0 to t=4 with y(0)=1.286 using Euler's method with a...
Suppose that y′=0.162sin2(ty)+1. Plot y(t) from t=0 to t=4 with y(0)=1.286 using Euler's method with a step size of 0.4.
Solve y^4-4y"=g(t) using variation of parameters.
Solve y^4-4y"=g(t) using variation of parameters.
Solve using judicious guessing. y''+4y = t*sin(2t)
Solve using judicious guessing. y''+4y = t*sin(2t)
Solve the initial value problem below using the method of Laplace transforms. ty''-4ty'+4y=20, y(0)=5 y'(0)=-6
Solve the initial value problem below using the method of Laplace transforms. ty''-4ty'+4y=20, y(0)=5 y'(0)=-6
a) ty’ −y/(1+T) = T,(T>0),y(1)=0 b) y′+(tanT)y=(cos(T))^2,y(0)=π2 Solve the above equations.
a) ty’ −y/(1+T) = T,(T>0),y(1)=0 b) y′+(tanT)y=(cos(T))^2,y(0)=π2 Solve the above equations.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT