In: Accounting
a construction company that you work for asked you to perform an economic study to determine if it would be desirable to purchase a new road master scraper . you have assembled the following information . a new road master will cost $40000 and will have a service life of 20 years if a good maintenance plan is followed. maintenace operating cost wil amount to $12000 for year one and will increase $6000 each year that is in use .the market for used scrapers is shot and yu cannot plan to sell the road master for more than $0 whenever you decide to retire it ( if you do decide to purchase it ). use a value of 12% for marr and determine the number of years you should use for the economic life of the road master in your economic study
For calulating Ecomoic Life Follow the follwing methods:-
Step 1 Calulate PV of Maint Cost each Year
Step 2 Cumulate all the PV of maintance cost
Step 3 Add the additional Cost in Cumulative PV i.e in Step 2 like we have 40000 in the above case
Step 4 Now calulate the A/P - The formula is in below
Step 5 Now calculate the average cost by multiplting A/P with Step 3 i.e. Step 4 *Step 3
Step 6 Now the minimum cost is the economic life of asset i.e. Year 4 in our case
Year | Manit Cost | PVF @12% | P.V | Cumulative P.V | Add Cost added in Cumu P.V | A/P @12% | Average Cost |
1 | 12000 | 0.892857 | 10714.29 | 10714.29 | 50714.29 | 1.12 | 56800 |
2 | 18000 | 0.785714 | 14142.86 | 24857.14 | 64857.14 | 0.5917 | 38375.97 |
3 | 24000 | 0.691429 | 16594.29 | 41451.43 | 81451.43 | 0.4163 | 33908.23 |
4 | 30000 | 0.608457 | 18253.71 | 59705.14 | 99705.14 | 0.3292 | 32822.93 |
5 | 36000 | 0.535442 | 19275.92 | 78981.07 | 118981.1 | 0.2774 | 33005.35 |
6 | 42000 | 0.471189 | 19789.95 | 98771.01 | 138771 | 0.2432 | 33749.11 |
7 | 48000 | 0.414647 | 19903.03 | 118674 | 158674 | 0.2191 | 34765.48 |
8 | 54000 | 0.364889 | 19704 | 138378 | 178378 | 0.2013 | 35907.5 |
9 | 60000 | 0.321102 | 19266.14 | 157644.2 | 197644.2 | 0.1877 | 37097.81 |
10 | 66000 | 0.28257 | 18649.62 | 176293.8 | 216293.8 | 0.177 | 38284 |
11 | 72000 | 0.248662 | 17903.63 | 194197.4 | 234197.4 | 0.168415 | 39442.46 |
12 | 78000 | 0.218822 | 17068.13 | 211265.6 | 251265.6 | 0.161437 | 40563.51 |
13 | 84000 | 0.192564 | 16175.34 | 227440.9 | 267440.9 | 0.155677 | 41634.45 |
14 | 90000 | 0.169456 | 15251.03 | 242691.9 | 282691.9 | 0.150871 | 42650.08 |
15 | 96000 | 0.149121 | 14315.64 | 257007.6 | 297007.6 | 0.146824 | 43607.91 |
16 | 102000 | 0.131227 | 13385.12 | 270392.7 | 310392.7 | 0.14339 | 44507.21 |
17 | 108000 | 0.115479 | 12471.78 | 282864.5 | 322864.5 | 0.140457 | 45348.49 |
18 | 114000 | 0.101622 | 11584.9 | 294449.4 | 334449.4 | 0.137937 | 46133.05 |
19 | 120000 | 0.089427 | 10731.27 | 305180.6 | 345180.6 | 0.135763 | 46862.76 |
20 | 126000 | 0.078696 | 9915.698 | 315096.3 | 355096.3 | 0.133879 | 47539.87 |
Calulation of A/P @ 12 %
Formula = i(1+i)n /( 1+i)n- 1
i.e. 2nd Year - A/P = 0.12(1+0.12)2/ (1+0.12)2 -1
= 0.15052 /1.2544-1
= 0.59168