Question

In: Physics

Scientists want to place a 1000 kg satellite in a circular orbit around Venus. They want...

Scientists want to place a 1000 kg satellite in a circular orbit around Venus. They want the height of the orbit to be three times the radius of Venus. Mvenus = 4.867 x 1024 kg Rvenus = 6.050 x 106 m G = 6.67428 x 10-11 N-m2/kg2

A) What would be the force of gravity between Venus and the satellite?

B) What would be the acceleration due to gravity at the satellite’s orbit?

C) What would be the orbital speed of the satellite?

D) How long (in seconds) would one orbit take?

please clearly

Solutions

Expert Solution


Related Solutions

Scientists want to place a 2700 kg satellite in orbit around Mars. They plan to have...
Scientists want to place a 2700 kg satellite in orbit around Mars. They plan to have the satellite orbit at a speed of 2623 m/s in a perfectly circular orbit. Here is some information that may help solve this problem: mmars = 6.4191 x 1023 kg rmars = 3.397 x 106 m G = 6.67428 x 10-11 N-m2/kg2 1)What radius should the satellite move at in its orbit? (Measured frrom the center of Mars.) 2)What is the force of attraction...
Scientists want to place a 3900 kg satellite in orbit around Mars. They plan to have...
Scientists want to place a 3900 kg satellite in orbit around Mars. They plan to have the satellite orbit a distance equal to 2.2 times the radius of Mars above the surface of the planet. Here is some information that will help solve this problem: mmars = 6.4191 x 1023 kg rmars = 3.397 x 106 m G = 6.67428 x 10-11 N-m2/kg2 1)What is the force of attraction between Mars and the satellite? 2)What speed should the satellite have...
Scientists want to place a 4 × 103 kg satellite in orbit around Mars. They plan...
Scientists want to place a 4 × 103 kg satellite in orbit around Mars. They plan to have the satellite orbit a distance equal to 2.3 times the radius of Mars above the surface of the planet. Here is some information that will help solve this problem: mmars = 6.4191 x 1023 kg rmars = 3.397 x 106 m G = 6.67428 x 10-11 N-m2/kg2 1) What is the force of attraction between Mars and the satellite? 2) What speed...
We want to place a satellite moving in a circular orbit 500 km above the earth's...
We want to place a satellite moving in a circular orbit 500 km above the earth's surface in a circular orbit 1000 km above the earth's surface. To do this, first give the satellite a speed increase of ikenv while it is in the 1st green orbit and place it in the 2nd yellow elliptical orbit, and then, when the elliptical orbit reaches a distance of 1000 km from the ground, it gives it a second Δv 'velocity and allows...
A satellite is placed in an elongated elliptical (not circular) orbit around the Earth. At the...
A satellite is placed in an elongated elliptical (not circular) orbit around the Earth. At the point in its orbit where it is closest to the Earth, it is a distance of 1.00 × 10^6 m from the surface (not the center) of the Earth, and is moving at a velocity of 5.14 km/s. At the point in its orbit when it is furthest from the Earth it is a distance of 2.00×10^6 m from the surface of the Earth....
Two satellites are in circular orbits around the earth. The orbit for satellite A is at...
Two satellites are in circular orbits around the earth. The orbit for satellite A is at a height of 555 km above the earth’s surface, while that for satellite B is at a height of 778 km. Find the orbital speed for (a) satellite A and (b) satellite B.
Two satellites are in circular orbits around the earth. The orbit for satellite A is at...
Two satellites are in circular orbits around the earth. The orbit for satellite A is at a height of 458 km above the earth’s surface, while that for satellite B is at a height of 732 km. Find the orbital speed for (a) satellite A and (b) satellite B.
A 150-kg satellite is in circular orbit of radius 7.3 Mm around Earth. Determine:(a) potential, kinetic,...
A 150-kg satellite is in circular orbit of radius 7.3 Mm around Earth. Determine:(a) potential, kinetic, and total mechanical energies.(b) the orbital speed.(c) the escape velocity from this altitude.
A satellite has a mass of 6189 kg and is in a circular orbit 4.84 ×...
A satellite has a mass of 6189 kg and is in a circular orbit 4.84 × 105 m above the surface of a planet. The period of the orbit is 2.4 hours. The radius of the planet is 4.80 × 106 m. What would be the true weight of the satellite if it were at rest on the planet’s surface? W = ?
A geostationary satellite is in a circular orbit around the Earth. What is the linear speed...
A geostationary satellite is in a circular orbit around the Earth. What is the linear speed of the satellite?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT