Question

In: Physics

Use the Divergence Theorem to evaluate ∫ ∫ S F ⋅ d S where F=〈2x^3,2y^3,4z^3〉 and...

Use the Divergence Theorem to evaluate ∫ ∫ S F ⋅ d S where F=〈2x^3,2y^3,4z^3〉 and  S is the sphere x2+y2+z2=16 oriented by the outward normal.

Solutions

Expert Solution

According to divergence theorem

Now,

In spherical coordinates(as the surface is a sphere),

(As surface is a sphere of radius 4)

Let, , then   

Hence,


Related Solutions

Use the Divergence Theorem to evaluate S F · dS, where F(x, y, z) = z2xi...
Use the Divergence Theorem to evaluate S F · dS, where F(x, y, z) = z2xi + y3 3 + cos z j + (x2z + y2)k and S is the top half of the sphere x2 + y2 + z2 = 4. (Hint: Note that S is not a closed surface. First compute integrals over S1 and S2, where S1 is the disk x2 + y2 ≤ 4, oriented downward, and S2 = S1 ∪ S.)
Use the Divergence Theorem to evaluate ∫∫ ? ∙ ?? where ? = ??2 ?⃑+ (??2...
Use the Divergence Theorem to evaluate ∫∫ ? ∙ ?? where ? = ??2 ?⃑+ (??2 − 3?4 )?⃑+ (?3 + ?2 )? and S is the surface of the sphere of radius 4 with ? ≤ 0 and ? ≤ 0 . would spherical coordinates work?
Use the Divergence Theorem to calculate the surface integral S F · dS; that is, calculate...
Use the Divergence Theorem to calculate the surface integral S F · dS; that is, calculate the flux of F across S. F(x, y, z) = x4i − x3z2j + 4xy2zk, S is the surface of the solid bounded by the cylinder x2 + y2 = 1 and the planes z = x + 8 and z = 0
Use the Divergence Theorem ∬SF⋅dS=∭D∇⋅FdV to find ∬SF⋅dS where F(x,y,z)=x^2i+y^2j+z^2k and S S is the surface...
Use the Divergence Theorem ∬SF⋅dS=∭D∇⋅FdV to find ∬SF⋅dS where F(x,y,z)=x^2i+y^2j+z^2k and S S is the surface of the solid bounded by x^2+y^2=9 , z = 0 , and z=6
Use the Stoke’s theorem to evaluate Z Z S (∇×F)·nˆ·dS where F(x, y, z) = (x^2...
Use the Stoke’s theorem to evaluate Z Z S (∇×F)·nˆ·dS where F(x, y, z) = (x^2 z^2,y^2 z^2, xyz) and surface S is part of the paraboloid z = x^2 + y^2 that lies inside the cylinder x^2 + y^2 = 4, oriented upwards. Sketch the surface S and label everything.
Use Stokes' Theorem to evaluate C F · dr where C is oriented counterclockwise as viewed...
Use Stokes' Theorem to evaluate C F · dr where C is oriented counterclockwise as viewed from above. F(x, y, z) = (x + y2)i + (y + z2)j + (z + x2)k, C is the triangle with vertices (7, 0, 0), (0, 7, 0), and (0, 0, 7).
Use Stokes' Theorem to evaluate C F · dr where C is oriented counterclockwise as viewed...
Use Stokes' Theorem to evaluate C F · dr where C is oriented counterclockwise as viewed from above. F(x, y, z) = xyi + 3zj + 7yk, C is the curve of intersection of the plane x + z = 10 and the cylinder x2 + y2 = 9.
Use Stokes' Theorem to evaluate C F · dr where C is oriented counterclockwise as viewed...
Use Stokes' Theorem to evaluate C F · dr where C is oriented counterclockwise as viewed from above. F(x, y, z) = xyi + 3zj + 5yk, C is the curve of intersection of the plane x + z = 2 and the cylinder x^2 + y^2 = 144.
Use the extended divergence theorem to compute the total flux of the vector field F(x, y,...
Use the extended divergence theorem to compute the total flux of the vector field F(x, y, z) = −3x2 + 3xz − y, 2y3 − 6y, 9x2 + 4z2 − 3x outward from the region F that lies inside the sphere x2 + y2 + z2 = 25 and outside the solid cylinder x2 + y2 = 4 with top at z = 1 and bottom at z = −1.
Problem 1: Use Green's Theorem to evaluate the vector line integral ∫C [?3??−?3] ?? where ?...
Problem 1: Use Green's Theorem to evaluate the vector line integral ∫C [?3??−?3] ?? where ? is the circle ?2+?2=1 with counterclockwise orientation. Problem 2: Which of the following equations represents a plane which is parallel to the plane 36?−18?+12?=30 and which passes through the point (3,6,1) ? a). 6?−3?+2?=3 b). 6?+3?−2?=34 c). 36?+18?−12?=204 d). 6?−3?+2?=2 e). 36?+18?+12?=228
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT