In: Finance
What is the present worth of a geometrically increasing series with a first year payment of $11,000 increasing at 6% per year for 25 years if the interest rate is 6% compounded annually?
Period | Cash flow | PVF@6% | Present value |
0 | $ - | 1.000 | $ - |
1 | $ 11,000.00 | 0.943 | $ 10,377.36 |
2 | $ 11,660.00 | 0.890 | $ 10,377.36 |
3 | $ 12,359.60 | 0.840 | $ 10,377.36 |
4 | $ 13,101.18 | 0.792 | $ 10,377.36 |
5 | $ 13,887.25 | 0.747 | $ 10,377.36 |
6 | $ 14,720.48 | 0.705 | $ 10,377.36 |
7 | $ 15,603.71 | 0.665 | $ 10,377.36 |
8 | $ 16,539.93 | 0.627 | $ 10,377.36 |
9 | $ 17,532.33 | 0.592 | $ 10,377.36 |
10 | $ 18,584.27 | 0.558 | $ 10,377.36 |
11 | $ 19,699.32 | 0.527 | $ 10,377.36 |
12 | $ 20,881.28 | 0.497 | $ 10,377.36 |
13 | $ 22,134.16 | 0.469 | $ 10,377.36 |
14 | $ 23,462.21 | 0.442 | $ 10,377.36 |
15 | $ 24,869.94 | 0.417 | $ 10,377.36 |
16 | $ 26,362.14 | 0.394 | $ 10,377.36 |
17 | $ 27,943.87 | 0.371 | $ 10,377.36 |
18 | $ 29,620.50 | 0.350 | $ 10,377.36 |
19 | $ 31,397.73 | 0.331 | $ 10,377.36 |
20 | $ 33,281.59 | 0.312 | $ 10,377.36 |
21 | $ 35,278.49 | 0.294 | $ 10,377.36 |
22 | $ 37,395.20 | 0.278 | $ 10,377.36 |
23 | $ 39,638.91 | 0.262 | $ 10,377.36 |
24 | $ 42,017.25 | 0.247 | $ 10,377.36 |
25 | $ 44,538.28 | 0.233 | $ 10,377.36 |
Present worth of increasing series | $ 259,433.96 |