In: Statistics and Probability
Spending on credit cards decreases after the Christmas spending season (as measured by amount charged on a credit card in December). The accompanying data set contains the monthly credit card charges of a random sample of 99 cardholders. Complete parts a) through e) below.
December |
January |
|
---|---|---|
1544.27 |
904.12 |
|
4296.56 |
7206.67 |
|
4231.61 |
4242.12 |
|
202.81 |
79.91 |
|
3298.24 |
4043.64 |
|
873.19 |
89.18 |
|
3810.19 |
3291.88 |
|
1933.67 |
2419.82 |
|
99.18 |
83.85 |
|
504.04 |
6.42 |
|
410.81 |
0.00 |
|
682.61 |
564.18 |
|
2161.39 |
2716.61 |
|
1123.94 |
187.14 |
|
2508.91 |
3268.47 |
|
1836.74 |
1524.15 |
|
9.95 |
1359.21 |
|
2335.77 |
733.37 |
|
78.61 |
75.02 |
|
101.37 |
70.29 |
|
598.63 |
633.69 |
|
648.99 |
1041.04 |
|
236.05 |
553.21 |
|
1266.11 |
1016.51 |
|
2122.66 |
1305.29 |
|
3.66 |
249.69 |
|
306.01 |
48.77 |
|
1902.62 |
872.67 |
|
559.31 |
485.47 |
|
2444.42 |
617.16 |
|
2802.07 |
1574.73 |
|
531.66 |
422.77 |
|
536.63 |
769.55 |
|
767.15 |
56.59 |
|
1957.22 |
1485.88 |
|
1677.47 |
495.22 |
|
2062.16 |
1064.18 |
|
397.01 |
510.68 |
|
5637.73 |
5640.54 |
|
5.49 |
5.49 |
|
2277.97 |
871.06 |
|
3817.64 |
1635.57 |
|
89.26 |
92.28 |
|
1452.86 |
669.77 |
|
527.62 |
829.52 |
|
105.78 |
69.26 |
|
1404.26 |
830.73 |
|
4232.29 |
2301.53 |
|
633.05 |
270.29 |
|
971.17 |
210.29 |
|
348.26 |
1011.77 |
|
0.00 |
1044.75 |
|
49.98 |
298.69 |
|
30.02 |
-29.98 |
|
472.03 |
1636.92 |
|
1115.27 |
1731.36 |
|
70.74 |
0.00 |
|
31.09 |
31.38 |
|
4.95 |
4.95 |
|
2523.34 |
1087.29 |
|
16.97 |
26.86 |
|
40.55 |
120.25 |
|
258.99 |
2007.56 |
|
122.88 |
291.58 |
|
0.00 |
104.07 |
|
109.79 |
53.01 |
|
5052.02 |
2841.17 |
|
3675.97 |
674.71 |
|
139.71 |
221.77 |
|
76.03 |
37.75 |
|
3153.81 |
533.38 |
|
2988.82 |
1931.72 |
|
651.65 |
692.13 |
|
9125.53 |
6804.52 |
|
916.77 |
392.98 |
|
2874.47 |
1307.01 |
|
798.29 |
796.03 |
|
34.57 |
0.00 |
|
44.17 |
1039.59 |
|
478.15 |
564.94 |
|
762.55 |
339.55 |
|
2349.89 |
5279.32 |
|
44.24 |
40.07 |
|
43.32 |
43.36 |
|
1339.63 |
653.94 |
|
1128.86 |
1070.82 |
|
2800.39 |
2334.09 |
|
52.16 |
91.46 |
|
1294.96 |
1435.03 |
|
328.42 |
719.74 |
|
28.34 |
28.59 |
|
599.23 |
980.01 |
|
4279.28 |
1576.48 |
|
567.56 |
0.00 |
|
479.95 |
161.82 |
|
1617.29 |
494.08 |
|
285.68 |
533.44 |
|
1283.56 |
462.02 |
|
3756.93 |
1479.44 |
a) Build a regression model to predict January spending from December's spending.
Jan with caret=____+____Dec (Round to four decimal places as needed.)
b) How much, on average, will cardholders who charged $2000 in December charge in January?
$____ (Round to the nearest cent as needed.)
c) Give a 95% confidence interval for the average January charges of cardholders who charged $2000 in December.
($___,$___) (Round to the nearest cent as needed.)
d) From part c), give a 95% confidence interval for the average decrease in the charges of cardholders who charged $2000 in December.
($___,$___) (Round to the nearest cent as needed.)
Ʃx = | 132265.87 |
Ʃy = | 104476.9 |
Ʃxy = | 309071548.2 |
Ʃx² = | 419022639.3 |
Ʃy² = | 303006428.9 |
Sample size, n = | 99 |
x̅ = Ʃx/n = 132265.87/99 = | 1336.018889 |
y̅ = Ʃy/n = 104476.9/99 = | 1055.322222 |
SSxx = Ʃx² - (Ʃx)²/n = 419022639.3379 - (132265.87)²/99 = | 242312938.7 |
SSyy = Ʃy² - (Ʃy)²/n = 303006428.9386 - (104476.9)²/99 = | 192749634.7 |
SSxy = Ʃxy - (Ʃx)(Ʃy)/n = 309071548.2037 - (132265.87)(104476.9)/99 = | 169488436.4 |
a)
Slope, b = SSxy/SSxx = 169488436.35114/242312938.66258 = 0.6994609
y-intercept, a = y̅ -b* x̅ = 1055.32222 - (0.69946)*1336.01889 = 120.82919
Regression equation :
ŷ = 120.8292 + (0.6995) x
b) Predicted value of y at x = 2000
ŷ = 120.8292 + (0.6995) * 2000 = 1519.75
c) Significance level, α = 0.05
Critical value, t_c = T.INV.2T(0.05, 97) = 1.9847
Sum of Square error, SSE = SSyy -SSxy²/SSxx
= 192749634.65971 - (169488436.35114)²/242312938.66258 = 74199093.3
Standard error, se = √(SSE/(n-2)) = √(74199093.30064/(99-2)) = 874.60797
95% confidence interval:
d) 95% confidence interval: