Question

In: Other

A piston-cylinder assembly has a liquid-vapor mixture of R-134a, with initial total mass of 3 kg,...

A piston-cylinder assembly has a liquid-vapor mixture of R-134a, with initial total mass of 3 kg, total volume of 0.12 m3 and a temperature of 10°C. The refrigerant then undergoes two processes in series: constant-temperature process followed by a constant- pressure process. At the end of the constant-pressure process, the pressure is 140 kPa and the R-134a is all saturated liquid. The constant temperature process is adiabatic while the constant-pressure process is not. Neglect kinetic and potential effects.

a. Solve for the initial quality of the liquid-vapor mixture of R-134a.

b. Determine the work and heat transfer for the constant-temperature process, in kJ.

c. Determine the work and heat transfer for the constant-pressure process, in kJ.

Solutions

Expert Solution


Related Solutions

A mass of 3 kg of saturated liquid-vapor mixture of water is contained in a piston-cylinder...
A mass of 3 kg of saturated liquid-vapor mixture of water is contained in a piston-cylinder device at 175 kPa. Initially, 2 kg of the water is in the liquid phase and the rest is in the vapor phase. An electrical heater is in operation, and the piston rises until it hits a set of stops, which are set at double the initial volume. Electrical heating continues until the pressure reaches 500 kPa. Determine (a) the initial and final temperatures,...
A mass of 3 kg of saturated liquid-vapor mixture of water is contained in a piston-cylinder...
A mass of 3 kg of saturated liquid-vapor mixture of water is contained in a piston-cylinder device at 175 kPa. Initially, 2 kg of the water is in the liquid phase and the rest is in the vapor phase. An electrical heater is in operation, and the piston rises until it hits a set of stops, which are set at double the initial volume. Electrical heating continues until the pressure reaches 500 kPa. Determine (a) the initial and final temperatures,...
A piston-cylinder assembly contains 2.5 kg of saturated refrigerant R-134a with a quality of 10 %...
A piston-cylinder assembly contains 2.5 kg of saturated refrigerant R-134a with a quality of 10 % at 0 °C (State 1). There is a linear spring mounted on the piston such that when the mixture is heated the pressure reaches 1000 kPa with a volume of 70 L just as the piston touches the stop (State 2). The system is then heated further until a pressure of 1200 kPa is reached (State 3). a) Find the volume of the refrigerant...
Refrigerant 134a, initially (state 1) a saturated liquid at -80C, is contained in a piston-cylinder assembly....
Refrigerant 134a, initially (state 1) a saturated liquid at -80C, is contained in a piston-cylinder assembly. The water undergoes a process to the corresponding saturated vapor (state 2), during which the piston moves freely in the cylinder. The change of state is brought about by heating the water as it undergoes an internally reversible process at constant pressure and temperature. If the mass of the refrigerant is 0.1 kg, determine (a) heat transfer using first law of thermodynamics in kJ...
A mass of 0.3 kg of saturated refrigerant-134a is contained in a piston-cylinder device at 240...
A mass of 0.3 kg of saturated refrigerant-134a is contained in a piston-cylinder device at 240 kPa. Initially, 70 percent of the mass is in the liquid phase. Now heat is transferred to the refrigerant at constant pressure until the cylinder contains vapor only. (a) show the process on a P-v and T-v diagrams with respect to saturation lines. Determine; (b) the volume occupied by the refrigerant initially, (c) the work done, and (d) the total heat transfer.
A mass of 0.3 kg of saturated refrigerant-134a is contained in a piston-cylinder device at 240...
A mass of 0.3 kg of saturated refrigerant-134a is contained in a piston-cylinder device at 240 kPa. Initially, 70 percent of the mass is in the liquid phase. Now heat is transferred to the refrigerant at constant pressure until the cylinder contains vapor only. (a) show the process on a P-v and T-v diagrams with respect to saturation lines. Determine; (b) the volume occupied by the refrigerant initially, (c) the work done, and (d) the total heat transfer.
100 kg of R-134a at 320 kPa are contained in a piston-cylinder device whose volume is...
100 kg of R-134a at 320 kPa are contained in a piston-cylinder device whose volume is 7.530 m3. The piston is now moved until the volume is one-half its original size. This is done such that the pressure of the R-134a does not change. Determine the final temperature and the change in the total internal energy of the R-134a. (Round the final answers to two decimal places.)
100 kg of R-134a at 200 kPa are contained in a piston–cylinder device whose volume is...
100 kg of R-134a at 200 kPa are contained in a piston–cylinder device whose volume is 12.766 m3. The piston is now moved until the volume is one-half its original size. This is done such that the pressure of the R-134a does not change. Determine the final temperature and the change in the total internal energy of R-134a. Use data from the steam tables. The final temperature is  °C. The total change in internal energy is  kJ/kg.
5 kg of saturated liquid water at 10 bars is contained in a piston-cylinder assembly and...
5 kg of saturated liquid water at 10 bars is contained in a piston-cylinder assembly and undergoes two processes. process 1-2: heated at constant pressure until it is saturated vapor. process 2-3: cooled as it is compressed at constant volume until it reaches 110 degrees celsius. determine the overall work and heat transfer for these processes. Hint: Must used linear interpolation from values in the correct Water tables.
A mass of 5 kg of saturated liquid vapor mixture of water is contained in a...
A mass of 5 kg of saturated liquid vapor mixture of water is contained in a piston cylinder device at 100 kPa, initially 2 kg of water is in the liquid phase and the rest is in the vapor phase.Heat is now transferred to the water and the piston which is resting on a set of stops, starts moving when the pressure in side reaches 200 kPa, heat transfer continues until the total volume increases by 20%, determine a. the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT