In: Statistics and Probability
TREND | ||
Billed Charge | Visit Time (Minutes) | |
$ 13,924.00 | 220 | |
$ 4,956.00 | 180 | |
$ 8,496.00 | 165 | |
$ 12,036.00 | 200 | |
$ 4,956.00 | 173 | |
$ 10,384.00 | 235 | |
$ 12,980.00 | 231 | |
$ 10,148.00 | 215 | |
$ 8,024.00 | 170 | |
$ 12,508.00 | 295 | |
$ 11,328.00 | 198 | |
$ 9,440.00 | 145 | |
$ 13,452.00 | 216 | |
$ 10,620.00 | 199 | |
$ 10,384.00 | 240 | |
$ 5,664.00 | 124 | |
$ 7,316.00 | 200 | |
$ 10,148.00 | 215 | |
$ 5,900.00 | 184 | |
$ 7,788.00 | 165 | |
TREND | ||
Computer the trend for the new visit times in minutes. | ||
Visit Times (min) | ||
300 | ||
305 | ||
310 | ||
320 | ||
Now that you have determined the answer, it is time to provide a 1 or 2 sentence | ||
write up of your answer. In statistics, it is important that you not only get the correct | ||
mathematical answer, but that you become comfortable writing up your results in | ||
a manner that is easily understood by the reader/audience. |
x | y | (x-x̅)² | (y-ȳ)² | (x-x̅)(y-ȳ) |
220 | 13924 | 462.25 | 19372321.96 | 94630.10 |
180 | 4956 | 342.25 | 20853835.56 | 84482.10 |
165 | 8496 | 1122.25 | 1053907.56 | 34391.10 |
200 | 12036 | 2.25 | 6317179.56 | 3770.10 |
173 | 4956 | 650.25 | 20853835.56 | 116448.30 |
235 | 10384 | 1332.25 | 742009.96 | 31441.10 |
231 | 12980 | 1056.25 | 11953614.76 | 112365.50 |
215 | 10148 | 272.25 | 391125.16 | 10319.10 |
170 | 8024 | 812.25 | 2245801.96 | 42710.10 |
295 | 12508 | 9312.25 | 8912613.16 | 288091.10 |
198 | 11328 | 0.25 | 3259469.16 | -902.70 |
145 | 9440 | 2862.25 | 6822.76 | 4419.10 |
216 | 13452 | 306.25 | 15440184.36 | 68764.50 |
199 | 10620 | 0.25 | 1204286.76 | 548.70 |
240 | 10384 | 1722.25 | 742009.96 | 35748.10 |
124 | 5664 | 5550.25 | 14888793.96 | 287465.70 |
200 | 7316 | 2.25 | 4869083.56 | -3309.90 |
215 | 10148 | 272.25 | 391125.16 | 10319.10 |
184 | 5900 | 210.25 | 13123230.76 | 52527.70 |
165 | 7788 | 1122.25 | 3008837.16 | 58109.10 |
ΣX | ΣY | Σ(x-x̅)² | Σ(y-ȳ)² | Σ(x-x̅)(y-ȳ) | |
total sum | 3970 | 190452 | 27413 | 149630088.8 | 1332338.00 |
mean | 198.50 | 9522.60 | SSxx | SSyy | SSxy |
sample size , n = 20
here, x̅ = Σx / n= 198.50 ,
ȳ = Σy/n =
9522.60
SSxx = Σ(x-x̅)² = 27413.0000
SSxy= Σ(x-x̅)(y-ȳ) = 1332338.0
estimated slope , ß1 = SSxy/SSxx =
1332338.0 / 27413.000
= 48.6024
intercept, ß0 = y̅-ß1* x̄ =
-124.9794
so, regression line is Ŷ =
-124.9794 + 48.6024
*x
......
For x(new visit time) = 300
Y(New billed charge) = -124.9794 + 48.6024 *300 = 14455.75
Similarly we can calculate for others value.
New Visit Time | New Billed Charge |
300 | $14,455.75 |
305 | $14,698.76 |
310 | $14,941.77 |
320 | $15,427.79 |
We have first created the relationship/equation between
two variable(dependent and independent) using trend/regression
analysis. Using that trend equation we have predicted the dependent
variable based on independent variable.