Question

In: Physics

A solid disk of mass m1 = 9.9 kg and radius R = 0.2 m is...

A solid disk of mass m1 = 9.9 kg and radius R = 0.2 m is rotating with a constant angular velocity of ω = 35 rad/s. A thin rectangular rod with mass m2 = 3.1 kg and length L = 2R = 0.4 m begins at rest above the disk and is dropped on the disk where it begins to spin with the disk.

1)

What is the initial angular momentum of the rod and disk system?

2)

What is the initial rotational energy of the rod and disk system?

3)

What is the final angular velocity of the disk?

4)

What is the final angular momentum of the rod and disk system?

5)

What is the final rotational energy of the rod and disk system?

6)

The rod took t = 6.5 s to accelerate to its final angular speed with the disk. What average torque was exerted on the rod by the disk?

Solutions

Expert Solution


Related Solutions

A solid disk of mass m1 = 9.3 kg and radius R = 0.22 m is...
A solid disk of mass m1 = 9.3 kg and radius R = 0.22 m is rotating with a constant angular velocity of ω = 31 rad/s. A thin rectangular rod with mass m2 = 3.9 kg and length L = 2R = 0.44 m begins at rest above the disk and is dropped on the disk where it begins to spin with the disk. 1) What is the initial angular momentum of the rod and disk system? 2) What...
A solid disk of mass M and radius R is rotating on the vertical axle with...
A solid disk of mass M and radius R is rotating on the vertical axle with angular speed w. Another disk of mass M/2 and radius R, initally not rotating, falls coaxially on the disk and sticks. The rotational velocity of this system after collision is: w w/2 2w/3 3w/2 2w
A disk with mass m = 11.8 kg and radius R = 0.31 m begins at...
A disk with mass m = 11.8 kg and radius R = 0.31 m begins at rest and accelerates uniformly for t = 17.2 s, to a final angular speed of ω = 31 rad/s. 1.What is the angular acceleration of the disk? 2. What is the angular displacement over the 17.2 s? 3. What is the moment of inertia of the disk? 4. What is the change in rotational energy of the disk?
A uniform disk with mass m = 9.07 kg and radius R = 1.36 m lies...
A uniform disk with mass m = 9.07 kg and radius R = 1.36 m lies in the x-y plane and centered at the origin. Three forces act in the +y-direction on the disk: 1) a force 313 N at the edge of the disk on the +x-axis, 2) a force 313 N at the edge of the disk on the –y-axis, and 3) a force 313 N acts at the edge of the disk at an angle θ =...
A uniform disk with mass m = 9.28 kg and radius R = 1.42 m lies...
A uniform disk with mass m = 9.28 kg and radius R = 1.42 m lies in the x-y plane and centered at the origin. Three forces act in the +y-direction on the disk: 1) a force 345 N at the edge of the disk on the +x-axis, 2) a force 345 N at the edge of the disk on the –y-axis, and 3) a force 345 N acts at the edge of the disk at an angle θ =...
A uniform disk with mass m = 9.44 kg and radius R = 1.32 m lies...
A uniform disk with mass m = 9.44 kg and radius R = 1.32 m lies in the x-y plane and centered at the origin. Three forces act in the +y-direction on the disk: 1) a force 318 N at the edge of the disk on the +x-axis, 2) a force 318 N at the edge of the disk on the –y-axis, and 3) a force 318 N acts at the edge of the disk at an angle θ =...
1. A uniform disk of mass M = 5.00 kg and radius r = 24.0 cm...
1. A uniform disk of mass M = 5.00 kg and radius r = 24.0 cm is mounted on a motor through its center. The motor accelerates the disk uniformly from rest by exerting a constant torque of 1.50 N · m. (a) What is the time required for the disk to reach an angular speed of 8.50 ✕ 102 rpm? (b) What is the number of revolutions through which the disk spins before reaching this angular speed? 2. A...
A solid, uniform disk of radius 0.250 m and mass 53.2 kg rolls down a ramp...
A solid, uniform disk of radius 0.250 m and mass 53.2 kg rolls down a ramp of length 4.70 m that makes an angle of 12.0° with the horizontal. The disk starts from rest from the top of the ramp. (a) Find the speed of the disk's center of mass when it reaches the bottom of the ramp. m/s (b) Find the angular speed of the disk at the bottom of the ramp. rad/s
A solid, uniform disk of radius 0.250 m and mass 60.6 kg rolls down a ramp...
A solid, uniform disk of radius 0.250 m and mass 60.6 kg rolls down a ramp of length 4.80 m that makes an angle of 12.0° with the horizontal. The disk starts from rest from the top of the ramp. (a) Find the speed of the disk's center of mass when it reaches the bottom of the ramp. m/s (b) Find the angular speed of the disk at the bottom of the ramp. rad/s
A merry-go-round modeled as a disk of mass M = 9.00  101 kg and radius R =...
A merry-go-round modeled as a disk of mass M = 9.00  101 kg and radius R = 2.20 m is rotating in a horizontal plane about a frictionless vertical axle (see figure). (a) After a student with mass m = 88.0 kg jumps onto the merry-go-round, the system's angular speed decreases to 2.10 rad/s. If the student walks slowly from the edge toward the center, find the angular speed of the system when she reaches a point 0.490 m from the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT