In: Statistics and Probability
Coarse sediments in a stream that are carried by intermittent contact with the streambed by rolling, sliding, and bouncing are called bedload. The rate at which the bedload is transported in a stream can vary dramatically, depending on flow conditions, stream slope, water depth, weight of the sediment, and so on. In a 2007 technical report for the U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, regression was used to model bedload transport rate (kilograms per second) as a function of stream discharge rate (cubic meters per second). The data for the study, collected from Hayden Creek in Colorado during snowmelt runoff in the following table.
Answer the following for the variables bedload (dependent variable) and Discharge (independent variable) by using SAS or R (your answer includes the SAS or R code and output).
Obs |
Discharge |
BedLoad |
1 |
1.03635 |
0.00373 |
2 |
1.31878 |
0.0118 |
3 |
1.12 |
0.01507 |
4 |
1.28595 |
0.0149 |
5 |
1.57864 |
0.02055 |
6 |
1.43772 |
0.02041 |
7 |
1.29477 |
0.00777 |
8 |
1.16407 |
0.00386 |
9 |
1.33357 |
0.01009 |
10 |
1.35399 |
0.01663 |
11 |
1.28252 |
0.01596 |
12 |
1.38463 |
0.01492 |
13 |
1.32336 |
0.01984 |
14 |
1.32336 |
0.01046 |
15 |
1.39484 |
0.02087 |
16 |
0.75154 |
0.0036 |
17 |
0.79239 |
0.00471 |
18 |
0.7107 |
0.00317 |
19 |
0.81281 |
0.00499 |
20 |
0.7107 |
0.0053 |
21 |
0.87408 |
0.00308 |
22 |
0.69028 |
0.00556 |
23 |
0.85365 |
0.00426 |
24 |
0.7107 |
0.00564 |
25 |
0.56775 |
0.0008 |
26 |
0.60859 |
0.00094 |
27 |
0.6939 |
0.00092 |
28 |
0.5612 |
0.00074 |
29 |
0.6478 |
0.00185 |
30 |
0.91584 |
0.00575 |
31 |
0.99158 |
0.00882 |
32 |
1.62547 |
0.01937 |
33 |
1.24061 |
0.00634 |
34 |
1.33107 |
0.00919 |
35 |
1.21859 |
0.01631 |
36 |
1.21859 |
0.01356 |
37 |
1.33107 |
0.01554 |
38 |
1.4495 |
0.01138 |
39 |
1.62547 |
0.01332 |
40 |
1.17524 |
0.00636 |
41 |
1.15391 |
0.00982 |
42 |
1.54858 |
0.01107 |
43 |
0.38707 |
0.0012 |
44 |
1.01107 |
0.01085 |
In order to solve this question I used R software.
R codes and output:
Que.a
d=read.table('bedload.csv',header=TRUE,sep=',')
head(d)
Obs Discharge BedLoad
1 1 1.03635 0.00373
2 2 1.31878 0.01180
3 3 1.12000 0.01507
4 4 1.28595 0.01490
5 5 1.57864 0.02055
6 6 1.43772 0.02041
attach(d)
The following objects are masked from d (pos = 3):
BedLoad, Discharge, Obs
plot(Discharge,BedLoad)
Scatter plot :
> fit=lm(BedLoad~Discharge)
> summary(fit)
Call:
lm(formula = BedLoad ~ Discharge)
Residuals:
Min 1Q Median 3Q Max
-0.0066801 -0.0026549 -0.0003797 0.0024205 0.0068250
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.007546 0.001830 -4.124 0.000172 ***
Discharge 0.015537 0.001612 9.640 3.32e-12 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.003495 on 42 degrees of freedom
Multiple R-squared: 0.6887, Adjusted R-squared: 0.6813
F-statistic: 92.93 on 1 and 42 DF, p-value: 3.315e-12
> res=fit$residuals
> plot(Discharge,res)
Que.b
Residual plot:
Que.c
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.007546 0.001830 -4.124 0.000172 ***
Discharge 0.015537 0.001612 9.640 3.32e-12 ***
We use t test statistic for testing
t = 9.64 and p-value = 0.000
Since p-value is less than 0.05, we reject null hypothesis and conclude that
Que.d
Intercept = -0.007546
Slope = 0.015537
Que.e
Fitted regression equation is
Bedload = -0.007546 + 0.015537 * Discharge
Scatter plot with regression line is,
> plot(Discharge,BedLoad)
> abline(fit)