a) Using the method of undetermined coefficients, find the
general solution of yʺ + 4yʹ −
5y = e^−4x
b) Solve xy'=(x+1)y^2
c) Solve the initial value problem :
(x−1)yʹ+3y= 1/ (x-1)^2 + sinx/(x-1)^2 ,
y(0)=3
Find the general solution y(t) to the following ODE using (a)
Method of Undetermined Coefficients AND (b) Variation of
Parameters:
2y"-y'+5y = cos(t) - et Sin(t)
Use the method of undetermined coefficients to find the complete
solutions of the following differential equations.
d2y/dx2 − 3 dy/dx + 2y = 2x2 +
ex + 2xex + 4e3x .
Use the method of Undetermined Coefficients to find a general
solution of this system X=(x,y)^T
Show the details of your work:
x' = 6 y + 9 t
y' = -6 x + 5
Note answer is: x=A cos 4t + B sin 4t +75/36; y=B cos
6t - A sin 6t -15/6 t
Find a particular solution yp of the following
EQUATIONS using the Method of Undetermined Coefficients. Primes
denote the derivatives with respect to x.
y''-16y=cos h(4x)
y''+36y=12cos(6x)+18sin(6x)
y''+4y'+8y=325e2tcos(5t)
y(5)+6y(4)-y=12
y(5)+2y(3)+2y''=8x2-2
SOLVE ALL ~ do ur besest (: