Question

In: Physics

A proton and an alpha particle are momentarily at rest at a distance r from each...

A proton and an alpha particle are momentarily at rest at a distance r from each other. They then begin to move apart. Find the speed of the proton by the time the distance between the proton and the alpha particle doubles.

Both particles are positively charged. The charge and the mass of the proton are, respectively, e andm. The charge and the mass of the alpha particle are, respectively, 2e and 4m.

A- Find the speed of the proton (vf)p by the time the distance between the particles doubles.

Express your answer in terms of some or all of the quantities e, m, r, and ?0.

B- The best way to check whether your result from Part A is correct is to check that it has the correct units. Which of the following expressions, where C stands for coulombs, N for newtons, kg for kilograms, and m for meters, represents the correct SI units for the expression found in part B?

Solutions

Expert Solution



Related Solutions

A proton and an alpha particle are released from rest when they are 0.210 nm apart....
A proton and an alpha particle are released from rest when they are 0.210 nm apart. The alpha particle (a helium nucleus) has essentially four times the mass and two times the charge of a proton. Find the maximum speed of proton. Find the maximum speed of alpha particle. Find the maximum acceleration of proton. Find the maximum acceleration of alpha particle.
A proton and an alpha particle are released from rest when they are 0.240 nm apart....
A proton and an alpha particle are released from rest when they are 0.240 nm apart. The alpha particle (a helium nucleus) has essentially four times the mass and two times the charge of a proton. Part A Find the maximum speed of proton. vmax =   m/s   Part B Find the maximum speed of alpha particle. vmax =   m/s   Part C Find the maximum acceleration of proton. amax =   m/s2   Part D Find the maximum acceleration of alpha particle. amax...
A Lithium-5 atom at rest decays into a proton and an \alpha particle with the release...
A Lithium-5 atom at rest decays into a proton and an \alpha particle with the release of 3.15×10-13 J of kinetic energies total of the proton and the \alpha particle. Determine the velocities of the proton and the alpha particle after the decay. You can assume the masses are m \alpha = 4mp = 6.64×10-27 kg.
An electron and a proton are each accelerated starting from rest through a potential difference of...
An electron and a proton are each accelerated starting from rest through a potential difference of 10 million volts. Find the momentum (in MeV/c) and the kinetic energy (in MeV) of each, and compare with the results of using the classical formulas.
1. A particle starts from rest, increasing its speed evenly, traveling a distance of 10.0 (m)...
1. A particle starts from rest, increasing its speed evenly, traveling a distance of 10.0 (m) in a time of 1.40 (s). From that moment it is kept at constant speed for 1.00 (s). Then its speed decreases to rest in a time of 2.80 (s). Calculate the total displacement of the particle. STEP BY STEP PLEASE
An electron and a proton are a distance r = 7 × 10-9 m apart. How...
An electron and a proton are a distance r = 7 × 10-9 m apart. How much energy is required to increase their separation by a factor of 3?
a proton is released from rest at a positivity charged plate that is in a parallel...
a proton is released from rest at a positivity charged plate that is in a parallel plate capacitor . it hits the negative charged plate after 2.54 x10^-6 s. the electric field is 134 N/C between the plates 1) find the magnititude of the surface charge density at each plate 2) what is the magnitude of force that the proton feels moving through plates 3)what is the proton’s final speed as it hits the negative plate 4)what is the potential...
A uranium-238 nucleus at rest undergoes radioactive decay, splitting into an alpha particle (helium nucleus) with...
A uranium-238 nucleus at rest undergoes radioactive decay, splitting into an alpha particle (helium nucleus) with mass 6.64×10-27 kg and a thorium nucleus with mass 3.89×10-25 kg. The measured kinetic energy of the alpha particle is 6.73×10-13 J. If after the decay, the thorium nucleus is observed to move in the negative z direction. After the decay, what direction did the alpha particle move? possible answers: Positive x, Negative x, Positive y, Negative y, Positive z, Negative z. After the...
In a hydrogen atom, a proton is separated from an electron by an average distance of...
In a hydrogen atom, a proton is separated from an electron by an average distance of about 5.3  10-11 meters. Use the information below to calculate the force of attraction by the electron on the proton. Electron Mass = 9.11  10-31 kg Proton Mass = 1.67  10-27 kg Elementary Charge = 1.602  10-19 C Coulomb's Constant (k) = 8.99  109 Nmm/CC Avagadro's Number = 6.02  1023 atoms/mole
Suppose that an electron and a proton are placed at a distance of 1.2nm away from...
Suppose that an electron and a proton are placed at a distance of 1.2nm away from each other (about 10 times the radius of a hydrogen atom). (a) How much is the Coulomb force between the electron and the proton? (b) Under this Coulomb force alone, how much is the acceleration of the electron towards the proton (in m/s2 )? (Google for the missing information.) (c) If the electron is instead placed on the edge of the supermassive black hole...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT