Question

In: Physics

Ultrasound probe emitting sound with wave length of 70 mm in air (sound speed 343 m/s)...

Ultrasound probe emitting sound with wave length of 70 mm in air (sound speed 343 m/s) is used for probing a muscle tissue (sound speed 1500 m/s). What are the smallest features in air and the muscle tissue that can be seen with this device?

Solutions

Expert Solution

As, wavelength = speed/frequency

Here, frequency =   343/0.07

                          = 4900 Hz

Thus, the smallest features in air =   1500/4900

                                                      = 0.3061 m

                                                      = 306.12 mm


Related Solutions

Calculate the wavelengths in air at 20°C for sounds in the maximum range of human hearing. The speed of sound in air is 343 m/s.
Calculate the wavelengths in air at 20°C for sounds in the maximum range of human hearing. The speed of sound in air is 343 m/s.Part A Calculate the wavelength of a 20-Hz wave.Part B Calculate the wavelength of a 20,000-Hz wave. Part C What is the wavelength of a 19-MHz ultrasonic wave? 
1. The overall length of a piccolo is 32.0 cm. The resonating air column vibrates as in a pipe that is open at both ends. Assume the speed of sound is 343 m/s.
  1. The overall length of a piccolo is 32.0 cm. The resonating air column vibrates as in a pipe that is open at both ends. Assume the speed of sound is 343 m/s. a. Find the frequency of the lowest note a piccolo can play (all holes are blocked) b. Find next three resonant modes of the piccolo when all the holes are blocked c. Draw diagrams of lowest 4 resonant modes, labeling all nodes and antinodes. d. Opening...
In a location where the speed of sound is 332 m/s, a 2,000 Hz sound wave...
In a location where the speed of sound is 332 m/s, a 2,000 Hz sound wave impinges on two slits 30 cm apart. (a) At what angle is the first-order maximum located? ° (b) If the sound wave is replaced by 4.60 cm microwaves, what slit separation gives the same angle for the first-order maximum? cm (c) If the slit separation is 1.00 μm, what frequency of light gives the same first-order maximum angle? Hz
1. The speed of the wave on your Cello string is: 90 m/s The length of...
1. The speed of the wave on your Cello string is: 90 m/s The length of your string is: 690 mm Keep in mind that the wavelength (λ), the frequency (f) and the wave speed (v) are related according to v = f λ. (a) Draw the shapes of the motion of the string for vibration that your string will produce when plucked or bowed (up to the 6th Harmonic). (Of course, a plucked or bowed string will vibrate in...
A sound wave has a propagation speed of 349 m/s, a frequency 1026 Hz, and has...
A sound wave has a propagation speed of 349 m/s, a frequency 1026 Hz, and has a maximum displacement of ym= 3.02x10-7 m. At time t= 0, and x= 0, the displacement is ym = 1.00x10-7 m. (a) Using these values, find an equation of form:            y(x,t) = ym sin(kx - ωt + ϕ) (b) Differentiate the expression and find the maximum speed of the oscillating air molecules. (c) Find the maximum magnitude of acceleration of the...
a) Kinetic theory. The speed of sound in the air is 330 m/s under standard conditions...
a) Kinetic theory. The speed of sound in the air is 330 m/s under standard conditions of temperature and pressure (273 K and 1 atm). Since the size of a molecule is much smaller than the average distance between the molecules, this number provides an estimate of the order of magnitude of the molecular media velocity. Consider a cubic meter of air and concentrate it on a N2 molecule that travels in the x direction at 330 m / s....
The speed of sound in water is _____ than the speed of sound in air because _____.
The speed of sound in water is _____ than the speed of sound in air because _____. (a) Faster; water is much harder to compress (b) Faster; water is much more dense (c) Slower; water is much easier to compress (d) Slower; water is much less dense (e) Equal; the two fluids are at the same pressure
In a region where the speed of sound is 330 m/s, a source of sound emits...
In a region where the speed of sound is 330 m/s, a source of sound emits a frequency of 440Hz. Assuming the observer is not moving, at what speed would the source have to move for the observed frequency to be 330Hz? Are they moving towards or away? A. Torwards B. Away C. This situation is not possible D. The Observer is at rest Part 2: Use the setup above. Enter the speed of the source with the units of...
A sound wave is oscillating in the n=7 mode in a tube of length 3.25 m....
A sound wave is oscillating in the n=7 mode in a tube of length 3.25 m. What is the wavelength and frequency of the standing sound wave in the tube if the speed of sound is 340 m/s and: a) The tube is open at both ends. b) The tube is closed at both ends. c) One end of the tube is open and the other end is closed.
Sounds waves are disturbances in air molecules that move at 343 m/s. Pitch is a measure...
Sounds waves are disturbances in air molecules that move at 343 m/s. Pitch is a measure of a sounds frequency. A middle C note in music has a frequency (pitch) of 261.6 Hz. a. If you are listening to a middle C, how many pulses (wave crests) of sound hit you in one minute (1 minute is exactly 60 seconds)? b. How far apart is each wave crest (wavelength) in a middle C note? c. If that note was sung...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT