Question

In: Math

Given the differential equation y’’ +5y’+6y=te^t with start value y(0) = 0 and y’(0). Let Y(s)...

Given the differential equation y’’ +5y’+6y=te^t with start value y(0) = 0 and y’(0). Let Y(s) be the Laplace transformed of y(t).

a) Find an expression for Y(s)

b) Find the solution to the equation by using inverse Laplace transform.

Solutions

Expert Solution


Related Solutions

Solve the differential equation. y'' − 8y' + 20y = te^t, y(0) = 0, y'(0) =...
Solve the differential equation. y'' − 8y' + 20y = te^t, y(0) = 0, y'(0) = 0 (Answer using fractions)
find the general solution of the given differential equation. 1. y''+2y'−3y=0 2.  6y''−y'−y=0 3.  y''+5y' =0 4.  y''−9y'+9y=0
find the general solution of the given differential equation. 1. y''+2y'−3y=0 2.  6y''−y'−y=0 3.  y''+5y' =0 4.  y''−9y'+9y=0
We got for x > 0 given a differential equation y’ = 1-y/x, with start value...
We got for x > 0 given a differential equation y’ = 1-y/x, with start value y(2)= 2 Find the Taylor polynomial of first and second degree for y(x) at x =2. Show that y(x) =x/2 +2/x solves the given equation.
Use variation of parameters to solve the following differential equations y''-5y'-6y=tln(t)
Use variation of parameters to solve the following differential equations y''-5y'-6y=tln(t)
Consider the differential equation (x 2 + 1)y ′′ − 4xy′ + 6y = 0. (a)...
Consider the differential equation (x 2 + 1)y ′′ − 4xy′ + 6y = 0. (a) Determine all singular points and find a minimum value for the radius of convergence of a power series solution about x0 = 0. (b) Use a power series expansion y(x) = ∑∞ n=0 anx n about the ordinary point x0 = 0, to find a general solution to the above differential equation, showing all necessary steps including the following: (i) recurrence relation; (ii) determination...
Solve the given differential equation by undetermined coefficients. y'' − 6y' + 9y = 21x +...
Solve the given differential equation by undetermined coefficients. y'' − 6y' + 9y = 21x + 3
Solve the differential equation. y'''-4y''+5y'-2y=0 Initial Conditions: y(0)=4 y'(0)=7 y''(0)=11
Solve the differential equation. y'''-4y''+5y'-2y=0 Initial Conditions: y(0)=4 y'(0)=7 y''(0)=11
Let   y(t) = (1 + t)^2 solution of the differential equation y´´ (t) + p (t) y´...
Let   y(t) = (1 + t)^2 solution of the differential equation y´´ (t) + p (t) y´ (t) + q (t) y (t) = 0 (*) If the Wronskian of two solutions of (*) equals three. (a) ffind p(t) and q(t) (b) Solve y´´ (t) + p (t) y´ (t) + q (t) y (t) = 1 + t
Find the General Solutions to the given differential equations y(t) = a) 6y' +y = 7t^2...
Find the General Solutions to the given differential equations y(t) = a) 6y' +y = 7t^2 b) ty' − y = 9t2e−9t,    t > 0 c) y' − 8y = 9et d) y' + y/t = 6 cos 5t,    t > 0
Solve the differential equation by Laplace transform y^(,,) (t)-2y^' (t)-3y(t)=sint   where y^' (0)=0 ,y=(0)=0
Solve the differential equation by Laplace transform y^(,,) (t)-2y^' (t)-3y(t)=sint   where y^' (0)=0 ,y=(0)=0
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT