In: Math
Find the derivative \( f'(x) \) where \( f(x)=x^2 \).
In this problem, we need to find the derivative of the given function. The given function is:
\( f(x)=x^2 \)
According to the power rule of derivatives:
\( \frac{d}{dx}(x^n)=nx^{n-1} \)
Substituting \( n=2 \) in the above formula, we get:
\( \frac{d}{dx}(x^2)=2x^{2-1} \)
\( \implies \frac{d}{dx}(x^2)=2x^{1} \)
\( \implies \frac{d}{dx}(x^2)=2x \)
\( \implies \boxed{f'(x)=2x } \)
The derivative of the given function is \( f'(x) =2x \).