Question

In: Advanced Math

given the initial simplex tableau (Matrix): x              y              s1        

given the initial simplex tableau (Matrix):

x              y              s1            s2            p
6              9              1              0              0              300
5              4              0              1              0              180
-3            -4            0              0              1              0

Show the matrices produced by each pivot

Solutions

Expert Solution

Given initial tableau or matrix and we need to find the further matrices by finding pivot elements

x     y      s1    s2     p            

6      9      1      0      0      300   

5      4      0      1      0      180   

-3     -4     0      0      1      0      

Here the most negative element in the bottom row will indicates the pivot element so here -4 ,so we have in column 2 so I am taking 2nd column as a pivot column and for pivot row the least positive result when last column divided by pivot column will indicates so

i.e. +min (300/9 , 180/4) = 300/9 so 1st row as a pivot row.

R1-> R1 (1/9)

   x      y      s1      s2     p            

2/3    1      1/9 0      0      100/3

   5      4      0        1      0      180   

-3     -4     0        0      1      0

R2-> R2 - 4R1        R3-> R3 + 4R1     

x      y    s1    s2     p            

2/3    1      1/9    0      0      100/3

7/3    0      -4/9   1      0      140/3

-1/3   0      4/9    0      1      400/3

Here the most negative element in the bottom row will indicates the pivot element so here –1/3 ,so we have in column 1   so I am taking 1ST    column as a pivot column for pivot row the least positive result when last column divided by pivot column will indicates so

i.e. +min ((100/3)/(2/3) , ((140/3)/(7/3)) = (140/3)/(7/3) so 2nd    row as a pivot row.

R2-> R2 (3/7)

x       y        s1      s2     p            

2/3    1 1/9      0      0      100/3

1        0     -4/21 3/7    0      20   

-1/3   0 4/9      0      1      400/3

R1-> R1 - (2/3) R2                R3-> R3 + (1/3)R2

x      y    s1     s2      p            

0      1      5/21   -2/7    0      20    

1      0     -4/21    3/7    0      20    

0      0      8/21     1/7    1      140   

So the above tableau or matrix is the final matrix


Related Solutions

3. Given the following maximum problem, set up the initial simplex tableau and circle the first...
3. Given the following maximum problem, set up the initial simplex tableau and circle the first pivot element. Do not solve the maximum problems MAXIMIZE : P = 3x1+2x2+3x3 subject to constraints : -x1+2x2+2x3<=8 4x1-x2+6x3<=10 x1+2x2+4x3<=12, x1>=0, x2>=0, x3>=0
For the following Linear Programming problem, use the Simplex Approach to construct the starting simplex tableau:...
For the following Linear Programming problem, use the Simplex Approach to construct the starting simplex tableau: Maximize ???? = P = 4 X + 5 Y Subjected to: 3 X + 5 Y ≤ 20 X + Y ≤ 6 X, Y ≥ 0 Then apply Gauss-Jordan computations to determine the new basic solution and find the Optimum Solution?
Solve the following problem using both graphical method and Simplex tableau Maximize f(x,y)=5x+4y subject to 3x+5y<=180...
Solve the following problem using both graphical method and Simplex tableau Maximize f(x,y)=5x+4y subject to 3x+5y<=180 where 28 => x => 0 and 30=> y=>0
Write the basic feasible solution from the tableau given. x1 x2 x3 s1 s2 z 8...
Write the basic feasible solution from the tableau given. x1 x2 x3 s1 s2 z 8 6 −1 1 0 0 160 5 2 4 0 1 0 148 −6 −10 −5 0 0 1 146
Using the information below to create the initial simplex matrix. Assume all variables are nonnegative. Maximize...
Using the information below to create the initial simplex matrix. Assume all variables are nonnegative. Maximize f=9x1+4x2+10x3f=9x1+4x2+10x3 subject to 9x1+6x2+2x3?459x1+6x2+2x3?45 7x1+8x2+10x3?707x1+8x2+10x3?70 8x1+9x2+11x3?658x1+9x2+11x3?65 x1?0x1?0 x2?0x2?0 x3?0x3?0
Let S1 be the level surface given by the equation f(x,y,z) =k1and letS2be the level surface...
Let S1 be the level surface given by the equation f(x,y,z) =k1and letS2be the level surface given by the equation g(x,y,z) =k2. Suppose that C is the curve of intersection of the surfacesS1andS2andassume that P is a point on C. show that any tangent vector to C at P must be parallel to∇f(P)×∇g(P)
Given: f(x,y) = 5 - 3x - y for 0 < x,y < 1 and x...
Given: f(x,y) = 5 - 3x - y for 0 < x,y < 1 and x + y < 1, 0 otherwise 1) find the covariance of x and y 2) find the marginal probability density function for x c) find the probability that x >= 0.6 given that y <= 0.2
1. The joint prob dist of X and Y is given by: P(x,y)=K|x-y|, x=0,1,2, y =...
1. The joint prob dist of X and Y is given by: P(x,y)=K|x-y|, x=0,1,2, y = 1, 2, 3, 4 a) Determine the value of K. b) Determine the marginal distribution of X and hence compute E(X) and Var(X). c) Determine the marginal distribution of Y and hence compute E(Y) and Var(Y). d) Determine E(X|y=3) and Var(Y|y=3). e) Are X and Y independent? 2. The joint prob dist of X and Y is given by: P(x,y) = Kxy, x=1,2,3, 4...
Solve the given initial value problem. y'''+2y''-13y'+10y=0 y(0)=4    y'(0)=42 y''(0)= -134 y(x)=
Solve the given initial value problem. y'''+2y''-13y'+10y=0 y(0)=4    y'(0)=42 y''(0)= -134 y(x)=
The joint PDF of X and Y is given by f(x, y) = C, (0< x<y<1)....
The joint PDF of X and Y is given by f(x, y) = C, (0< x<y<1). a) Determine the value of C b) Determine the marginal distribution of X and compute E(X) and Var(X) c) Determine the marginal distribution of Y and compute E(Y) and Var(Y) d) Compute the correlation coefficient between X and Y
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT