In: Finance
1. The present value of a series of 50 payments starting at 100 at the end of the first year and increasing by 1 each year thereafter is equal to 2X. The annual effective rate of interest is 9%. Calculate X.
| (a ) Year | (b) Payment $ | ( c) PV factor @9%(=1/(1+0.09)^a) | (d) Present Value (c*b) $ |
| 1 | 100 | 0.917 | 91.74 |
| 2 | 101 | 0.842 | 85.01 |
| 3 | 102 | 0.772 | 78.76 |
| 4 | 103 | 0.708 | 72.97 |
| 5 | 104 | 0.650 | 67.59 |
| 6 | 105 | 0.596 | 62.61 |
| 7 | 106 | 0.547 | 57.99 |
| 8 | 107 | 0.502 | 53.70 |
| 9 | 108 | 0.460 | 49.73 |
| 10 | 109 | 0.422 | 46.04 |
| 11 | 110 | 0.388 | 42.63 |
| 12 | 111 | 0.356 | 39.46 |
| 13 | 112 | 0.326 | 36.53 |
| 14 | 113 | 0.299 | 33.81 |
| 15 | 114 | 0.275 | 31.30 |
| 16 | 115 | 0.252 | 28.97 |
| 17 | 116 | 0.231 | 26.80 |
| 18 | 117 | 0.212 | 24.80 |
| 19 | 118 | 0.194 | 22.95 |
| 20 | 119 | 0.178 | 21.23 |
| 21 | 120 | 0.164 | 19.64 |
| 22 | 121 | 0.150 | 18.17 |
| 23 | 122 | 0.138 | 16.81 |
| 24 | 123 | 0.126 | 15.55 |
| 25 | 124 | 0.116 | 14.38 |
| 26 | 125 | 0.106 | 13.30 |
| 27 | 126 | 0.098 | 12.30 |
| 28 | 127 | 0.090 | 11.37 |
| 29 | 128 | 0.082 | 10.52 |
| 30 | 129 | 0.075 | 9.72 |
| 31 | 130 | 0.069 | 8.99 |
| 32 | 131 | 0.063 | 8.31 |
| 33 | 132 | 0.058 | 7.68 |
| 34 | 133 | 0.053 | 7.10 |
| 35 | 134 | 0.049 | 6.56 |
| 36 | 135 | 0.045 | 6.07 |
| 37 | 136 | 0.041 | 5.61 |
| 38 | 137 | 0.038 | 5.18 |
| 39 | 138 | 0.035 | 4.79 |
| 40 | 139 | 0.032 | 4.43 |
| 41 | 140 | 0.029 | 4.09 |
| 42 | 141 | 0.027 | 3.78 |
| 43 | 142 | 0.025 | 3.49 |
| 44 | 143 | 0.023 | 3.23 |
| 45 | 144 | 0.021 | 2.98 |
| 46 | 145 | 0.019 | 2.75 |
| 47 | 146 | 0.017 | 2.54 |
| 48 | 147 | 0.016 | 2.35 |
| 49 | 148 | 0.015 | 2.17 |
| 50 | 149 | 0.013 | 2.00 |
| Total of PV $ | 1,210.49 | ||
Present Value = 2X
$ 1,210.49 = 2X
X = 1,210.49 / 2 = $605.25(Answer)