In: Statistics and Probability
Assume that X N(12:6; 5:8). Find the following probabilities
(note: 5.8 is a variance,
not a standard deviation)
a) P(X > 13:1)
b) P(X < 11:2)
c) P(X 12:3) (Hint: The answer is the same as that to P(X <
12:3).)
d) P(X < 7:8)
e) P(X > 9:6)
e) P(X > 9:6)
Solution :
Given that,
mean = = 12:6
variance = 2 = 5.8
standard deviation = = 2.4083
a ) P (x > 13:1 )
= 1 - P (x < 13:1 )
= 1 - P ( x - / ) < ( 13:1 - 12:6 / 2.4083)
= 1 - P ( z < 0.5 / 2.4083 )
= 1 - P ( z < 0.21)
Using z table
= 1 - 0.5832
= 0.4168
Probability = 0.4168
b ) P( x < 11:2 )
P ( x - / ) < ( 11:2 - 12:6 / 2.4083)
P ( z < -1.4 / 2.4083 )
P ( z < -0.58)
= 0.2810
Probability = 0.2810
c ) P( x < 12:3 )
P ( x - / ) < ( 12:3 - 12:6 / 2.4083)
P ( z < -0.3 / 2.4083 )
P ( z < -0.12 )
= 0.4522
Probability = 0.4522
d ) P( x < 7:8 )
P ( x - / ) < (7:8 - 12:6 / 2.4083)
P ( z < - 4.8 / 2.4083 )
P ( z < -1.99 )
= 0.0233
Probability = 0.0233
e ) P (x > 9:6 )
= 1 - P (x < 9:6 )
= 1 - P ( x - / ) < ( 9:6 - 12:6 / 2.4083)
= 1 - P ( z < - 3 / 2.4083 )
= 1 - P ( z < -1.24)
Using z table
= 1 - 0.1075
= 0.8925
Probability = 0.8925