In: Statistics and Probability
Plain M&M: 15,14,15,15,14,16,15,14,15,16,16,14,15,14,15,15,14,17,17,15,15,17,14,16,14,16,17,13,16,16, 15, 17,6,14,16,15,13,15,17,15,17,14,15,14,16,14
Peanut Butter: 8,6,8,7,8,8,8,7,3,7,10,7,7,6,8,7,8,7,7,7,8,8,8,7,9,7,8,8,7,8,8,8,6,7,8,8,8,7,6,7,7,8,8,8,14,8,8,7,6
Skittles: 15,14,15,14,14,15,15,14,15,15,14,15,15,15,14,15,20,15,15,15,14,14,15,15,15,16,12,15,15,14, 14,15,14,15,14,14,14,13,16
**Assume that both Plain and Peanut M&M candies, and Skittles are normally distributed.
2. Suppose that M&M claims that each bag of Peanut M&Ms
should be 18 grams and Plain M&Ms should be 13.5 grams. Suppose
that Skittles claims that each bag contains 16 grams.
a. Test the claim that M&M is shorting its customers in
servings of Peanut M&Ms.
b. Test the claim that M&M is overfilling Plain serving bags of
M&Ms.
c. Test the claim that Skittles weights are different than
stated.
d. Discuss your choice of ?.
i. Why did you choose the ? you did?
ii. If you had chosen a different ?, would it have affected your
conclusion?
a)
Ho :   µ =   18  
           
   
Ha :   µ <   18  
    (Left tail test)      
   
          
           
   
Level of Significance ,    α =   
0.05          
       
sample std dev ,    s = √(Σ(X- x̅ )²/(n-1) )
=   1.3860      
           
Sample Size ,   n =    49  
           
   
Sample Mean,    x̅ = ΣX/n =   
7.5306          
       
          
           
   
degree of freedom=   DF=n-1=   48  
           
   
          
           
   
Standard Error , SE = s/√n =   1.3860   / √
   49   =   0.1980  
   
t-test statistic= (x̅ - µ )/SE = (   7.531  
-   18   ) /    0.1980  
=   -52.88
          
           
   
p-Value   =   0.0000   [Excel formula
=t.dist(t-stat,df) ]      
       
Decision:   p-value<α, Reject null hypothesis
          
           
Conclusion: There is enough evidence that M&M is shorting its
customers in servings of Peanut M&Ms
b)
Ho :   µ =   13.5  
           
   
Ha :   µ >   13.5  
    (Right tail test)      
   
          
           
   
Level of Significance ,    α =   
0.05          
       
sample std dev ,    s = √(Σ(X- x̅ )²/(n-1) )
=   1.7506      
           
Sample Size ,   n =    46  
           
   
Sample Mean,    x̅ = ΣX/n =   
14.9565          
       
          
           
   
degree of freedom=   DF=n-1=   45  
           
   
          
           
   
Standard Error , SE = s/√n =   1.7506   / √
   46   =   0.2581  
   
t-test statistic= (x̅ - µ )/SE = (   14.957  
-   13.5   ) /    0.2581  
=   5.64
          
           
   
p-Value   =   0.0000   [Excel formula
=t.dist(t-stat,df) ]      
       
Decision:   p-value<α, Reject null hypothesis
          
           
  
Conclusion: There is enough evidence that M&M is overfilling Plain serving bags of M&Ms.
c)
Ho :   µ =   16  
           
   
Ha :   µ ╪   16      
(Two tail test)      
   
          
           
   
Level of Significance ,    α =   
0.05          
       
sample std dev ,    s = √(Σ(X- x̅ )²/(n-1) )
=   1.1506      
           
Sample Size ,   n =    39  
           
   
Sample Mean,    x̅ = ΣX/n =   
14.6923          
       
          
           
   
degree of freedom=   DF=n-1=   38  
           
   
          
           
   
Standard Error , SE = s/√n =   1.1506   / √
   39   =   0.1842  
   
t-test statistic= (x̅ - µ )/SE = (   14.692  
-   16   ) /    0.1842  
=   -7.10
          
           
   
          
           
   
p-Value   =   0.0000   [Excel formula
=t.dist(t-stat,df) ]      
       
Decision:   p-value<α, Reject null hypothesis
          
           
Conclusion: There is enough evidence that   Skittles
weights are different than stated
d)
choice of ? = 0.01
e)
To avoid type 1 error
No it would not effect conclusion
THANKS
revert back for doubt
please upvote