In: Statistics and Probability
Suppose we have a binomial experiment in which success is defined to be a particular quality or attribute that interests us.
(a) Suppose n = 26 and p =
0.39 (For each answer, enter a number. Use 2 decimal
places.)
n·p =
n·q =
Can we approximate p̂ by a normal distribution? Why? (Fill
in the blank. There are two answer blanks. A blank is represented
by _____.)
yes, p̂ can be approximated by a normal random variable
because _____ _____.
first blank
n·p does not exceed
n·p exceeds
both n·p and n·q exceed
n·q does not exceed
n·q exceeds
n·p and n·q do not exceed
second blank (Enter an exact number.)
What are the values of μp̂ and
σp̂? (For each answer, enter a number.
Use 3 decimal places.)
μp̂ =
σp̂ =
(b) Suppose n = 25 and p = 0.15. Can we safely
approximate p̂ by a normal distribution? Why or why not?
(Fill in the blank. There are two answer blanks. A blank is
represented by _____.)
no, p̂ cannot be approximated by a normal random variable
because _____ _____.
first blank
n·p does not exceed
n·p exceeds
both n·p and n·q exceed
n·q does not exceed
n·q exceeds
n·p and n·q do not exceed
second blank (Enter an exact number.)
(c) Suppose n = 64 and p = 0.39. (For
each answer, enter a number. Use 2 decimal places.)
n·p =
n·q =
Can we approximate p̂ by a normal distribution? Why? (Fill
in the blank. There are two answer blanks. A blank is represented
by _____.)
yes, p̂ can be approximated by a normal random variable
because _____ _____.
first blank
n·p does not exceed
n·p exceeds
both n·p and n·q exceed
n·q does not exceed
n·q exceeds
n·p and n·q do not exceed
second blank (Enter an exact number.)
What are the values of μp̂ and
σp̂? (For each answer, enter a number.
Use 3 decimal places.)
μp̂ = mu sub p hat =
σp̂ = sigma sub p hat =
(a) Suppose n = 26 and p =
0.39 (For each answer, enter a number. Use 2 decimal
places.)
n·p = 26*0.39 = 10.14
n·q = 26*(1-0.39) = 15.86
Can we approximate p̂ by a normal distribution? Why? (Fill
in the blank. There are two answer blanks. A blank is represented
by _____.)
yes, p̂ can be approximated by a normal random variable
because _____ _____.
both n·p and n·q exceed
10.
What are the values of μp̂ and
σp̂? (For each answer, enter a number.
Use 3 decimal places.)
μp̂ = 0.39
σp̂ = sqrt(0.39*(1-0.39)/26) =
0.096
(b) Suppose n = 25 and p = 0.15. Can we safely
approximate p̂ by a normal distribution? Why or why not?
(Fill in the blank. There are two answer blanks. A blank is
represented by _____.)
n·p = 25*0.15 = 3.75
n·q = 25*(1-0.15) = 21.25
no, p̂ cannot be approximated by a normal random variable
because _____ _____.
n·p does not exceed 10.
(c) Suppose n = 64 and p = 0.39. (For each
answer, enter a number. Use 2 decimal places.)
n·p = 64*0.39 = 24.96
n·q = 64*(1-0.39) = 39.04
Can we approximate p̂ by a normal distribution? Why? (Fill
in the blank. There are two answer blanks. A blank is represented
by _____.)
yes, p̂ can be approximated by a normal random variable
because _____ _____.
both n·p and n·q exceed
10.
What are the values of μp̂ and
σp̂? (For each answer, enter a number.
Use 3 decimal places.)
μp̂ = mu sub p hat = 0.39
σp̂ = sigma sub p hat =
sqrt(0.39*(1-0.39)/64) = 0.061