Question

In: Computer Science

Prove the upper and lower bound of T(n) = T(n/3) + T(2n/3) + O(n)

Prove the upper and lower bound of T(n) = T(n/3) + T(2n/3) + O(n)

Solutions

Expert Solution

To prove the upper and lower bound of the given function:

Thank U:)


Related Solutions

Solve the following recurrence relations: (find an asymptotic upper bound O(?) for each one) a. T(n)...
Solve the following recurrence relations: (find an asymptotic upper bound O(?) for each one) a. T(n) = T(2n/3)+T(n/3) + n^2 b. T(n) = √nT(√n) + n c. T(n) = T(n-1)+T(n/2) + n The base case is that constant size problems can be solved in constant time (O(1)). You can use the induction, substitution or recursion tree method
Give asymptotic upper and lower bounds for T(n). Assume that T(n) is constant for n <=...
Give asymptotic upper and lower bounds for T(n). Assume that T(n) is constant for n <= 2. Make your bounds as tight as possible, and justify your answers. T(n) = T(n-2) + n^2
Give upper and lower bounds for T(n) in the following recurrence: T(n) = 3T(n/4) + n
Give upper and lower bounds for T(n) in the following recurrence: T(n) = 3T(n/4) + n
1.)Prove that f(n) = O(g(n)), given: F(n) = 2n + 10; g(n) = n 2.)Show that...
1.)Prove that f(n) = O(g(n)), given: F(n) = 2n + 10; g(n) = n 2.)Show that 5n2 – 15n + 100 is Θ(n2 ) 3.)Is 5n2 O(n)?
Use a recursion tree to determine a good asymptotic upper bound on the recurrence T(n) =...
Use a recursion tree to determine a good asymptotic upper bound on the recurrence T(n) = 2T(n/3) + 2n. Use the substitution method to verify your answer
5. Without using the method of mathematical induction, prove that 5^n − 3^n + 2n is...
5. Without using the method of mathematical induction, prove that 5^n − 3^n + 2n is divisible by 4 for all natural n.
Write a program in JAVA that prompts the user for a lower bound and an upper...
Write a program in JAVA that prompts the user for a lower bound and an upper bound. Use a loop to output all of the even integers within the range inputted by the user on a single line.
(5.1.24) Prove that 1/(2n) ≤ [1 · 3 · 5 · · · · · (2n...
(5.1.24) Prove that 1/(2n) ≤ [1 · 3 · 5 · · · · · (2n − 1)]/(2 · 4 · · · · · 2n) whenever n is a positive integer
(Lower bound for searching algorithms) Prove: any comparison-based searching algorithm on a set of n elements...
(Lower bound for searching algorithms) Prove: any comparison-based searching algorithm on a set of n elements takes time Ω(log n) in the worst case. (Hint: you may want to read Section 8.1 of the textbook for related terminologies and techniques.)
Given the data listed in the table, calculate the lower and upper bound for the 95%...
Given the data listed in the table, calculate the lower and upper bound for the 95% confidence interval for the mean at X = 7. The regression equation is given by y^ = b0 + b1x. Regression Statistics Statistic Value b0 4.3 b1 0.50 x 5.36 se 3.116 SSX 25.48 SST 58.25 n 40 Give your answers to 2 decimal places. You may find this Student's t distribution table useful. a) Lower bound = b)Upper bound =
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT