Question

In: Statistics and Probability

Independent random samples taken at two companies provided the following information regarding annual salaries of the employees.

 

Independent random samples taken at two companies provided the following information regarding annual salaries of the employees.

 

Whitney Co.

Max Co.

Sample Size

72

50

Sample Mean (in $1,000)

48

43

Sample Standard Deviation (in $1,000)

12

10

?

a.

Use Excel. We want to determine whether there is a significant difference between the average salaries of the employees at the two companies. Compute the test statistic.

b.

Use Excel. State the null and alternative hypotheses. Compute the p-value; and at 95% confidence, test the hypotheses and interpret the results.

Solutions

Expert Solution

 

State the hypotheses. The first step is to state the null hypothesis and an alternative hypothesis.

Null hypothesis: u1 = u 2
Alternative hypothesis: u1 u 2

Note that these hypotheses constitute a two-tailed test.  

Formulate an analysis plan. For this analysis, the significance level is 0.05. Using sample data, we will conduct a two-sample t-test of the null hypothesis.

Analyze sample data. Using sample data, we compute the standard error (SE), degrees of freedom (DF), and the t statistic test statistic (t).

SE = sqrt[(s12/n1) + (s22/n2)]
SE = 2.00
DF = 120
t = [ (x1 - x2) - d ] / SE

t = 2.50

where s1 is the standard deviation of sample 1, s2 is the standard deviation of sample 2, n1 is the size of sample 1, n2 is the size of sample 2, x1 is the mean of sample 1, x2 is the mean of sample 2, d is the hypothesized difference between the population means, and SE is the standard error.

Since we have a two-tailed test, the P-value is the probability that a t statistic having 120 degrees of freedom is more extreme than -2.50; that is, less than -2.50 or greater than 2.50.

Thus, the P-value = 0.014.

Interpret results. Since the P-value (0.014) is less than the significance level (0.05), we cannot accept the null hypothesis.

From the above test we have sufficient evidence in the favor of the claim that there is a significant difference between the average salaries of the employees at the two companies.


Related Solutions

Two independent samples are drawn from two populations, and the following information is provided.                 Sample...
Two independent samples are drawn from two populations, and the following information is provided.                 Sample 1              Sample 2 n/x         34                           52                 55                           65 s              14                           18 We want to test the following hypotheses. H0: μ1 - μ2 ≥ 0 Ha: μ1 - μ2 < 0             Determine the degrees of freedom.             Compute the test statistic.              At the 5% level, test the hypotheses.
Consider the following data for two independent random samples taken from two normal populations with equal...
Consider the following data for two independent random samples taken from two normal populations with equal variances. Find the 95% confidence interval for µ1 - µ2. Sample 1: 11,5,12,9,6,8 Sample 2: 12,9,16,13,11,11 What are the left adn right endpoints?
Consider the following data for two independent (not matched) random samples taken from two normal populations....
Consider the following data for two independent (not matched) random samples taken from two normal populations. Sample 1 10 7 13 7 9 8 Sample 2 8 7 8 4 6 9 In the next question you will be asked to develop a confidence interval for the difference between the two population means.
Suppose independent random samples that are taken to test the difference between the means of two...
Suppose independent random samples that are taken to test the difference between the means of two populations (n1 = 66 and n2 =46). The variances of the populations are unknown but are assumed to be unequal. The sample standard deviations are s1=82 and s2=68. The appropriate distribution to use is the: A) t distribution with df = 110 B ) t distribution with df = 107 C) t distribution with df = 106 D) F distribution with numerator df =...
Consider the following results for two independent random samples taken from two populations. Sample 1 Sample...
Consider the following results for two independent random samples taken from two populations. Sample 1 Sample 2 n1 = 50 n2 = 30 x1 = 13.4 x2 = 11.7 σ1 = 2.3 σ2 = 3 What is the point estimate of the difference between the two population means? Provide a 90% confidence interval for the difference between the two population means (to 2 decimals). ( , ) Provide a 95% confidence interval for the difference between the two population means...
Consider the following results for two independent random samples taken from two populations. Sample 1 Sample...
Consider the following results for two independent random samples taken from two populations. Sample 1 Sample 2 n 1 = 50 n 2 = 35 x 1 = 13.1 x 2 = 11.5 σ 1 = 2.4 σ 2 = 3.2 What is the point estimate of the difference between the two population means? (to 1 decimal) Provide a 90% confidence interval for the difference between the two population means (to 2 decimals). Use z-table. ( ,  ) Provide a 95%...
Consider the following results for two independent random samples taken from two populations. Sample 1 Sample...
Consider the following results for two independent random samples taken from two populations. Sample 1 Sample 2 n 1 = 50 n 2 = 35 x 1 = 13.6 x 2 = 11.1 σ 1 = 2.4 σ 2 = 3.4 What is the point estimate of the difference between the two population means? (to 1 decimal) Provide a 90% confidence interval for the difference between the two population means (to 2 decimals). Provide a 95% confidence interval for the...
Consider the following results for two independent random samples taken from two populations. Sample 1 Sample...
Consider the following results for two independent random samples taken from two populations. Sample 1 Sample 2 n 1 = 40 n 2 = 30 x 1 = 13.1 x 2 = 11.1 σ 1 = 2.3 σ 2 = 3.4 What is the point estimate of the difference between the two population means? (to 1 decimal) Provide a 90% confidence interval for the difference between the two population means (to 2 decimals). Use z-table. ( ,  ) Provide a 95%...
Consider the following results for two independent random samples taken from two populations. Sample 1 Sample...
Consider the following results for two independent random samples taken from two populations. Sample 1 Sample 2 n 1 = 50 n 2 = 30 x 1 = 13.8 x 2 = 11.5 σ 1 = 2.4 σ 2 = 3.4 What is the point estimate of the difference between the two population means? (to 1 decimal) Provide a 90% confidence interval for the difference between the two population means (to 2 decimals). Use z-table. ( , ) Provide a...
The following results come from two independent random samples taken of two populations. Sample 1 Sample...
The following results come from two independent random samples taken of two populations. Sample 1 Sample 2 n1 = 60 n2 = 35 x1 = 13.6 x2 = 11.6 σ1 = 2.5 σ2 = 3 (a) What is the point estimate of the difference between the two population means? (Use x1 − x2.) (b) Provide a 90% confidence interval for the difference between the two population means. (Use x1 − x2. Round your answers to two decimal places.)   to   (c)...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT