In: Statistics and Probability
nasal length | nasal width |
609 | 241 |
629 | 222 |
620 | 233 |
564 | 207 |
645 | 247 |
493 | 189 |
606 | 226 |
660 | 240 |
630 | 215 |
672 | 231 |
778 | 263 |
616 | 220 |
727 | 271 |
810 | 284 |
778 | 279 |
823 | 272 |
755 | 268 |
710 | 278 |
701 | 238 |
803 | 255 |
855 | 308 |
838 | 281 |
830 | 288 |
864 | 306 |
635 | 236 |
565 | 204 |
562 | 216 |
580 | 225 |
596 | 220 |
597 | 219 |
636 | 201 |
559 | 213 |
615 | 228 |
740 | 234 |
677 | 237 |
675 | 217 |
629 | 211 |
692 | 238 |
710 | 221 |
730 | 281 |
763 | 292 |
686 | 251 |
717 | 231 |
737 | 275 |
816 | 275 |
In the kangaroo noses tab in the data file, We have data on the nasal length and width of grey kangaroos in mm. Use this data to complete the following exercises.
a) Run a regression and report your findings with nasal length as the dependent variable and nasal width as the independent variable, i.e. length = b0 + b1 × width
b) Interpret the estimate for b1.
c) Test the hypothesis that the ?1 coefficient is equal to 1.
d) Construct a 95% confidence interval for the b0 coefficient.
nasal length | nasal width | (X-Mx)^2 | (Y-My)^2 | (X-Mx)(Y-My) | Y' | (Y-Y')^2 | |
609 | 241 | 6146.56 | 9.957531 | 247.3956 | 221.6067 | 376.0983 | |
629 | 222 | 3410.56 | 490.8686 | 1293.884 | 227.359 | 28.71881 | |
620 | 233 | 4542.76 | 124.4464 | 751.8844 | 224.7705 | 67.72497 | |
564 | 207 | 15227.56 | 1380.535 | 4584.996 | 208.6642 | 2.769526 | |
645 | 247 | 1797.76 | 8.090864 | -120.604 | 231.9608 | 226.1778 | |
493 | 189 | 37791.36 | 3042.135 | 10722.24 | 188.2437 | 0.571973 | |
606 | 226 | 6625.96 | 329.6242 | 1477.862 | 220.7439 | 27.62649 | |
660 | 240 | 750.76 | 17.26864 | 113.8622 | 236.275 | 13.8758 | |
630 | 215 | 3294.76 | 850.0464 | 1673.529 | 227.6466 | 159.9366 | |
672 | 231 | 237.16 | 173.0686 | 202.5956 | 239.7263 | 76.14875 | |
778 | 263 | 8208.36 | 355.1131 | 1707.307 | 270.2132 | 52.03078 | |
616 | 220 | 5097.96 | 583.4909 | 1724.707 | 223.62 | 13.10464 | |
727 | 271 | 1568.16 | 720.6242 | 1063.04 | 255.545 | 238.8569 | |
810 | 284 | 15030.76 | 1587.58 | 4884.929 | 279.4168 | 21.00543 | |
778 | 279 | 8208.36 | 1214.135 | 3156.907 | 270.2132 | 77.20722 | |
823 | 272 | 18387.36 | 775.3131 | 3775.707 | 283.1558 | 124.4517 | |
755 | 268 | 4569.76 | 568.5575 | 1611.884 | 263.5982 | 19.37627 | |
710 | 278 | 510.76 | 1145.446 | 764.8844 | 250.6556 | 747.7165 | |
701 | 238 | 184.96 | 37.89086 | -83.7156 | 248.0671 | 101.3462 | |
803 | 255 | 13363.36 | 117.602 | 1253.618 | 277.4035 | 501.9188 | |
855 | 308 | 28089.76 | 4076.113 | 10700.33 | 292.3594 | 244.6287 | |
838 | 281 | 22680.36 | 1357.513 | 5548.773 | 287.47 | 41.86062 | |
830 | 288 | 20334.76 | 1922.335 | 6252.218 | 285.1691 | 8.014112 | |
864 | 306 | 31187.56 | 3824.735 | 10921.73 | 294.9479 | 122.1489 | |
635 | 236 | 2745.76 | 66.51309 | 427.3511 | 229.0847 | 47.82182 | |
565 | 204 | 14981.76 | 1612.469 | 4915.04 | 208.9518 | 24.52034 | |
562 | 216 | 15725.16 | 792.7353 | 3530.707 | 208.089 | 62.58448 | |
580 | 225 | 11534.76 | 366.9353 | 2057.307 | 213.266 | 137.6871 | |
596 | 220 | 8353.96 | 583.4909 | 2207.818 | 217.8678 | 4.54634 | |
597 | 219 | 8172.16 | 632.802 | 2274.062 | 218.1554 | 0.713353 | |
636 | 201 | 2641.96 | 1862.402 | 2218.196 | 229.3723 | 804.9863 | |
559 | 213 | 16486.56 | 970.6686 | 4000.373 | 207.2261 | 33.3376 | |
615 | 228 | 5241.76 | 261.002 | 1169.662 | 223.3324 | 21.7863 | |
740 | 234 | 2766.76 | 103.1353 | -534.182 | 259.284 | 639.2789 | |
677 | 237 | 108.16 | 51.20198 | 74.41778 | 241.1644 | 17.34212 | |
675 | 217 | 153.76 | 737.4242 | 336.7289 | 240.5892 | 556.4486 | |
629 | 211 | 3410.56 | 1099.291 | 1936.284 | 227.359 | 267.6167 | |
692 | 238 | 21.16 | 37.89086 | -28.3156 | 245.4786 | 55.92905 | |
710 | 221 | 510.76 | 536.1798 | -523.316 | 250.6556 | 879.4543 | |
730 | 281 | 1814.76 | 1357.513 | 1569.573 | 256.4078 | 604.7742 | |
763 | 292 | 5715.36 | 2289.091 | 3617.04 | 265.8991 | 681.2596 | |
686 | 251 | 1.96 | 46.84642 | -9.58222 | 243.7529 | 52.52048 | |
717 | 231 | 876.16 | 173.0686 | -389.404 | 252.6689 | 469.5404 | |
737 | 275 | 2460.16 | 951.3798 | 1529.884 | 258.4211 | 274.859 | |
816 | 275 | 16537.96 | 951.3798 | 3966.596 | 281.1425 | 37.73038 | |
Mean | 687.4 | 244.1556 | |||||
Sum | 30933 | 10987 | 377508.8 | 40195.91 | 108576.2 | 10987 | 8968.053 |
a) Y'=b0+b1*Width
b) To interpret, for every additonal unit of input output value increases by 0.287612 units.
c)
To test hypothesis:
and
Df= n-2= 43
The test statistic:
P-value= 0.000
The test statistic is significant and rejects H0 at coefficient value equal to 1. THere is insufficient evidence to support the claim that the coeffciient value is equal to 1.
d) 95% Confidence interval for b0:
t critical: