Question

In: Physics

A spring has an unstretched length of 0.31 m. A block with mass 0.23 kg is...

A spring has an unstretched length of 0.31 m. A block with mass 0.23 kg is hung at rest from the spring, and the spring becomes 0.37 m long. Next the spring is stretched to a length of 0.43 m and the block is released from rest. Air resistance is negligible. How long does it take for the block to return to where it was released?

Next the block is again positioned at rest, hanging from the spring (0.37 m long). A bullet of mass 3.0 g traveling at a speed of 193 m/s straight upward buries itself in the block, which then reaches a maximum height h above its original position. What is the speed of the block immediately after the bullet hits?

*How high does the block go after being hit by the bullet? (In other words, calculate h.)

(Please explain the third question by details)

Solutions

Expert Solution


Related Solutions

Consider a mass m attached to a spring of unstretched length `0. The top of the...
Consider a mass m attached to a spring of unstretched length `0. The top of the spring is attached to the ceiling. The mass is stretched down a distance r from it’s unstretched equilibrium length, while at the same time the spring is inclined at an angle θ with respect the the vertical. This makes the spring an elastic pendulum, where not only the angle changes, but also the length! Determine the equations of motion of this pendulum (Hint: there...
A block of mass m = 2.5 kg is attached to a spring with spring constant...
A block of mass m = 2.5 kg is attached to a spring with spring constant k = 640 N/m. It is initially at rest on an inclined plane that is at an angle of θ = 27° with respect to the horizontal, and the coefficient of kinetic friction between the block and the plane is μk = 0.11. In the initial position, where the spring is compressed by a distance of d = 0.19 m, the mass is at...
A block of mass 1.59 kg is connected to a spring of spring constant 148 N/m...
A block of mass 1.59 kg is connected to a spring of spring constant 148 N/m which is then set into oscillation on a surface with a small coefficient of kinetic friction. The mass is pulled back 30.6 cm to the right and released. On the first right to left oscillation, the mass reaches 29.38 cm to the left. Part A What is the coefficient of friction? Part B To what distance does the mass return on the slide back...
A block with a mass m = 2.12 kg is pushed into an ideal spring whose...
A block with a mass m = 2.12 kg is pushed into an ideal spring whose spring constant is k = 3580 N/m. The spring is compressed x = 0.073 m and released. After losing contact with the spring, the block slides a distance of d = 1.71 m across the floor before coming to rest. A.) Write an expression for the coefficient of kinetic friction between the block and the floor using the symbols given in the problem statement...
A block with mass m =6.2 kg is hung from a vertical spring. When the mass...
A block with mass m =6.2 kg is hung from a vertical spring. When the mass hangs in equilibrium, the spring stretches x = 0.22 m. While at this equilibrium position, the mass is then given an initial push downward at v = 4.6 m/s. The block oscillates on the spring without friction. After t = 0.32 s what is the speed of the block? At t = 0.32 s what is the magnitude of the net force on the...
A block with mass m =6.2 kg is hung from a vertical spring. When the mass...
A block with mass m =6.2 kg is hung from a vertical spring. When the mass hangs in equilibrium, the spring stretches x = 0.22 m. While at this equilibrium position, the mass is then given an initial push downward at v = 4.6 m/s. The block oscillates on the spring without friction. What is the spring constant of the spring? 2) What is the oscillation frequency? After t = 0.32 s what is the speed of the block? What...
A block with mass m =7.4 kg is hung from a vertical spring. When the mass...
A block with mass m =7.4 kg is hung from a vertical spring. When the mass hangs in equilibrium, the spring stretches x = 0.21 m. While at this equilibrium position, the mass is then given an initial push downward at v = 5.1 m/s. The block oscillates on the spring without friction. 3)After t = 0.4 s what is the speed of the block? 4)What is the magnitude of the maximum acceleration of the block? 5)At t = 0.4...
A block with mass m =7.5 kg is hung from a vertical spring. When the mass...
A block with mass m =7.5 kg is hung from a vertical spring. When the mass hangs in equilibrium, the spring stretches x = 0.25 m. While at this equilibrium position, the mass is then given an initial push downward at v = 4.1 m/s. The block oscillates on the spring without friction. After t = 0.3 s what is the speed of the block? What is the magnitude of the maximum acceleration of the block? At t = 0.3...
A block with mass m =6.5 kg is hung from a vertical spring. When the mass...
A block with mass m =6.5 kg is hung from a vertical spring. When the mass hangs in equilibrium, the spring stretches x = 0.22 m. While at this equilibrium position, the mass is then given an initial push downward at v = 4.1 m/s. The block oscillates on the spring without friction. 1) What is the spring constant of the spring? N/m 2) What is the oscillation frequency? Hz 3) After t = 0.39 s what is the speed...
A block with mass m =6.7 kg is hung from a vertical spring. When the mass...
A block with mass m =6.7 kg is hung from a vertical spring. When the mass hangs in equilibrium, the spring stretches x = 0.29 m. While at this equilibrium position, the mass is then given an initial push downward at v = 4.7 m/s. The block oscillates on the spring without friction. A)What is the spring constant of the spring? B)What is the oscillation frequency? C) After t = 0.32 s what is the speed of the block? D)What...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT