In: Math
the PDF of normal distribution is = 1/σ * √2π * e ^ -(x-u)^2/
2σ^2
standard normal distribution is a normal distribution with a,
mean of 0,
standard deviation of 1
equation of the normal curve is ( Z )= x - u / sd ~ N(0,1)
mean ( u ) = 54
standard Deviation ( sd )= 4.5
------------------------------------------------------------------------------
To find P(a < = Z < = b) = F(b) - F(a)
P(X < 51) = (51-54)/4.5
= -3/4.5 = -0.6667
= P ( Z <-0.6667) From Standard Normal Table
= 0.2525
P(X < 60) = (60-54)/4.5
= 6/4.5 = 1.3333
= P ( Z <1.3333) From Standard Normal Table
= 0.9088
P(51 < X < 60) = 0.9088-0.2525 = 0.6568
------------------------------------------------------------------------------
(a)
sample size (n) = 4; standard Deviation ( sd )= 4.5/ Sqrt ( 4 )
=2.25
to find P(a <= Z <=b) = F(b) - F(a)
P(X < 51) = (51-54)/4.5/ Sqrt ( 4 )
= -3/2.25
= -1.3333
= P ( Z <-1.3333) From Standard Normal Table
= 0.0912
P(X < 60) = (60-54)/4.5/ Sqrt ( 4 )
= 6/2.25 = 2.6667
= P ( Z <2.6667) From Standard Normal Table
= 0.9962
P(51 < X < 60) = 0.9962-0.0912 = 0.905
------------------------------------------------------------------------------
(b)
the mean length of the four fish is between 51 and 60 mm is 54