Question

In: Advanced Math

Let A = 2 0 1 0 2 0 1 0 2 and eigenvalue λ1 =...

Let A =

2 0 1
0 2 0
1 0 2

and eigenvalue λ1 = 3 and associated eigenvector v(1) = (1, 0, 1)t . Find the second dominant eigenvalue λ2 (or the approximation to λ2) by the Wielandt Dflation method

Solutions

Expert Solution


Related Solutions

Let A =   [  0 2 0 1 0 2 0 1 0 ]  . (a)...
Let A =   [  0 2 0 1 0 2 0 1 0 ]  . (a) Find the eigenvalues of A and bases of the corresponding eigenspaces. (b) Which of the eigenspaces is a line through the origin? Write down two vectors parallel to this line. (c) Find a plane W ⊂ R 3 such that for any w ∈ W one has Aw ∈ W , or explain why such a plain does not exist. (d) Write down explicitly...
Let A = 0 2 0 1 0 2 0 1 0 . (a) Find the...
Let A = 0 2 0 1 0 2 0 1 0 . (a) Find the eigenvalues of A and bases of the corresponding eigenspaces. (b) Which of the eigenspaces is a line through the origin? Write down two vectors parallel to this line. (c) Find a plane W ⊂ R 3 such that for any w ∈ W one has Aw ∈ W , or explain why such a plain does not exist. (d) Write down explicitly a diagonalizing...
Let A = 0 2 0 1 0 2 0 1 0 . (a) Find the...
Let A = 0 2 0 1 0 2 0 1 0 . (a) Find the eigenvalues of A and bases of the corresponding eigenspaces. (b) Which of the eigenspaces is a line through the origin? Write down two vectors parallel to this line. (c) Find a plane W ⊂ R 3 such that for any w ∈ W one has Aw ∈ W , or explain why such a plain does not exist. (d) Write down explicitly a diagonalizing...
Let ? be an eigenvalue of a matrix A. Explain why dim(?) ? 1
Let ? be an eigenvalue of a matrix A. Explain why dim(?) ? 1
Let X = [1, 0, 2, 0]tand Y = [1, −1, 0, 2]t. (a) Find a...
Let X = [1, 0, 2, 0]tand Y = [1, −1, 0, 2]t. (a) Find a system of two equations in four unknowns whose solution set is spanned by X and Y. (b) Find a system of three equations in four unknowns whose solution set is spanned by X and Y. (c) Find a system of four equations in four unknowns that has the set of vectors of the form Z + aX + bY as its general solution where...
Find the basic eigenvectors of A corresponding to the eigenvalue λ. A = −1 −3 0...
Find the basic eigenvectors of A corresponding to the eigenvalue λ. A = −1 −3 0 −3 −12 35 4 36 −3 9 0 9 12 −37 −4 −38 , λ = −1 Number of Vectors: 1 ⎧ ⎨ ⎩⎫ ⎬ ⎭ 0 0 0
Which of the following statements is/are true? 1) If a matrix has 0 as an eigenvalue,...
Which of the following statements is/are true? 1) If a matrix has 0 as an eigenvalue, then it is not invertible. 2) A matrix with its entries as real numbers cannot have a non-real eigenvalue. 3) Any nonzero vector will serve as an eigenvector for the identity matrix.
Let v1 be an eigenvector of an n×n matrix A corresponding to λ1, and let v2,...
Let v1 be an eigenvector of an n×n matrix A corresponding to λ1, and let v2, v3 be two linearly independent eigenvectors of A corresponding to λ2, where λ1 is not equal to λ2. Show that v1, v2, v3 are linearly independent.
Let f(x, y) be a function such that f(0, 0) = 1, f(0, 1) = 2,...
Let f(x, y) be a function such that f(0, 0) = 1, f(0, 1) = 2, f(1, 0) = 3, f(1, 1) = 5, f(2, 0) = 5, f(2, 1) = 10. Determine the Lagrange interpolation F(x, y) that interpolates the above data. Use Lagrangian bi-variate interpolation to solve this and also show the working steps.
Let G = Z4 ⊕ Z4, and H = {(0, 0), (2, 0), (0, 2), (2,...
Let G = Z4 ⊕ Z4, and H = {(0, 0), (2, 0), (0, 2), (2, 2)}, and K = (1, 2). Is G/H isomorphic to Z4 or Z2 ⊕ Z2? Is G/K isomorphic to Z4 or Z2 ⊕ Z2?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT