In: Math
| As the climate grows warmer, we expect many animal species to move towards the poles in an attempt to maintain their |
| preferred temperature range. Do data on fish in the North Sea confirm this expectation? Data for 25 years, 1977 through 2001, |
| on mean winter temperatures at the bottom of the North Sea (degrees Celsius) and on the center of the distribution of anglerfish |
| in degrees of North latitude are given below. Does the fish distribution depend on temperature? |
| Year | Degrees North Latitude | Temp (oC) |
| 1977 | 57.20 | 6.26 |
| 1978 | 57.96 | 6.26 |
| 1979 | 57.65 | 6.27 |
| 1980 | 57.59 | 6.31 |
| 1981 | 58.01 | 6.34 |
| 1982 | 59.06 | 6.32 |
| 1983 | 56.85 | 6.37 |
| 1984 | 56.87 | 6.39 |
| 1985 | 57.43 | 6.42 |
| 1986 | 57.72 | 6.52 |
| 1987 | 57.83 | 6.68 |
| 1988 | 57.87 | 6.76 |
| 1989 | 57.48 | 6.78 |
| 1990 | 58.13 | 6.89 |
| 1991 | 58.52 | 6.9 |
| 1992 | 58.48 | 6.93 |
| 1993 | 57.89 | 6.98 |
| 1994 | 58.71 | 7.02 |
| 1995 | 58.07 | 7.09 |
| 1996 | 58.49 | 7.13 |
| 1997 | 58.28 | 7.15 |
| 1998 | 58.49 | 7.29 |
| 1999 | 58.01 | 7.34 |
| 2000 | 58.57 | 7.57 |
| 2001 | 58.90 | 7.65 |
a)
| Ho: | |
| Ha: | |
| test-statistic: | |
| df: | |
| Exact P value for the test-statistic | |
| Conclusion relative to the hypothesis: | |
| ts= ,df= ,P= |
b)
| What is the equation for the regression? |
c)
|
What is the estimate of the amount of variance in Y which is due to its regression on the independent variable? |
Ans.
Solve Using Excel:
| Year | Degrees North Latitude | Temp (oC) |
| 1977 | 57.2 | 6.26 |
| 1978 | 57.96 | 6.26 |
| 1979 | 57.65 | 6.27 |
| 1980 | 57.59 | 6.31 |
| 1981 | 58.01 | 6.34 |
| 1982 | 59.06 | 6.32 |
| 1983 | 56.85 | 6.37 |
| 1984 | 56.87 | 6.39 |
| 1985 | 57.43 | 6.42 |
| 1986 | 57.72 | 6.52 |
| 1987 | 57.83 | 6.68 |
| 1988 | 57.87 | 6.76 |
| 1989 | 57.48 | 6.78 |
| 1990 | 58.13 | 6.89 |
| 1991 | 58.52 | 6.9 |
| 1992 | 58.48 | 6.93 |
| 1993 | 57.89 | 6.98 |
| 1994 | 58.71 | 7.02 |
| 1995 | 58.07 | 7.09 |
| 1996 | 58.49 | 7.13 |
| 1997 | 58.28 | 7.15 |
| 1998 | 58.49 | 7.29 |
| 1999 | 58.01 | 7.34 |
| 2000 | 58.57 | 7.57 |
| 2001 | 58.9 | 7.65 |
| n | 25 |
| r | 0.603379776 |
| sx | 0.42871047 |
| sy | 0.581200482 |
| sxy | 0.473449102 |
| b | 0.817998723 |
| sb | 0.225425783 |
| t | 3.628683078 |
| df | 23 |
| p-value | 0.001407517 |
| alpha | 0.05 |
| t-crit | 2.06865761 |
| Significant | Yes |

a)
| Ho: | β_1=0 |
| Ha: | β_1≠0 |
| test-statistic: | 3.628683078 |
| df: | 23 |
| Exact P value for the test-statistic | 0.0014 |
| Conclusion relative to the hypothesis: | Fish Distribution depends on Temperature |
| ts=3.6287 ,df=n-2=24 ,P=0.0014 |
b)
| Rgression Model |
| y=52.4524+0.8180*Temp |
c) 0.3640
| SUMMARY OUTPUT | ||||||
| Regression Statistics | ||||||
| Multiple R | 0.603379776 | |||||
| R Square | 0.364067154 | Rgression Model | ||||
| Adjusted R Square | 0.3364179 | y=52.4524+0.8180*Temp | ||||
| Standard Error | 0.473449102 | |||||
| Observations | 25 | |||||
| ANOVA | ||||||
| df | SS | MS | F | Significance F | ||
| Regression | 1 | 2.951512809 | 2.951512809 | 13.16734088 | 0.001407517 | |
| Residual | 23 | 5.155543191 | 0.224154052 | |||
| Total | 24 | 8.107056 | ||||
| Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
| Intercept | 52.45244226 | 1.532397184 | 34.22901244 | 3.10416E-21 | 49.28243717 | 55.62244736 |
| Temp (oC) | 0.817998723 | 0.225425783 | 3.628683078 | 0.001407517 | 0.351669962 | 1.284327484 |