Question

In: Statistics and Probability

The body temperatures of adults are normally distributed with a mean of 98.60˚F and a standard...

The body temperatures of adults are normally distributed with a mean of 98.60˚F and a standard deviation of 0.73˚F. Step 1 of 4: What temperature would put you in the 77th percentile? Round to 2 decimals. Step 2 of 4: What temperature would put you in the bottom 20% of temperatures? Round to 2 decimals. Step 3 of 4: What is the probability that someone has a body temperature of 100°F or more? Step 4 of 4: What is the probability that someone has a body temperature less than 98°F?

Solutions

Expert Solution

Given,

= 98.6 , = 0.73

a)

77th percentile = + Z * , Where Z is critical value at 77% confidence level.

= 98.6 + 0.7388 * 0.73

= 99.1393

b)

We have to calculate x such that P( X < x) = 0.20

That is we have to calculate 20th percentile.

77th percentile = + Z * , Where Z is critical value at 20% confidence level.

= 98.6 + (-0.8416) * 0.73

= 97.9856

c)

Using standard normal conversion.,

P( X < x) = P (Z < x - / ​​​​​​)

So,

P( X >= 100) = P( Z >= 100 - 98.60 / 0.73)

= P(Z >= 1.9178)

= 0.0276

d)

P( X < 98) = P( Z < 98 - 98.60 / 0.73)

= P( Z < -0.7895)

= 0.2149


Related Solutions

The body temperatures of adults are normally distributed with a mean of 98.60˚F and a standard...
The body temperatures of adults are normally distributed with a mean of 98.60˚F and a standard deviation of 0.73˚F. Step 1 of 4: What temperature would put you in the 74th percentile? Round to 2 decimals. Step 2 of 4: What temperature would put you in the bottom 30% of temperatures? Round to 2 decimals. Step 3 of 4: What is the probability that someone has a body temperature of 101°F or more? Step 4 of 4: What is the...
The body temperatures of adults are normally distributed with a mean of 98.6° F and a...
The body temperatures of adults are normally distributed with a mean of 98.6° F and a standard deviation of 0.50° F. If 25 adults are randomly selected, find the probability that their mean body temperature is greater than 98.4° F.
Assume that human body temperatures are normally distributed with a mean of 98.2°F and a standard...
Assume that human body temperatures are normally distributed with a mean of 98.2°F and a standard deviation of 0.63°F a hospital uses it 100.6°F as the lowest temperature considered to be a fever what percentage of normal and healthy person would be considered to have a fever does this percentage suggested a cut off of 100.6°F is appropriate B physicians want to select a minimum temperature for requiring for the medical test what should the temperature be if we want...
Assume that human body temperatures are normally distributed with a mean of 98.19°F and a standard...
Assume that human body temperatures are normally distributed with a mean of 98.19°F and a standard deviation of 0.63°F. a. A hospital uses 100.6°F as the lowest temperature considered to be a fever. What percentage of normal and healthy persons would be considered to have a​ fever? Does this percentage suggest that a cutoff of 100.6°F is​ appropriate? b. Physicians want to select a minimum temperature for requiring further medical tests. What should that temperature​ be, if we want only​...
The body temperature of adults is normally distributed with a mean of 98.6°F and standard deviation...
The body temperature of adults is normally distributed with a mean of 98.6°F and standard deviation of 0.60°F. Suppose 36 adults are randomly selected, what is the probability that their mean body temperature is less than 98.0°F?
The body temperatures of adults have a mean of 98.6° F and a standard deviation of...
The body temperatures of adults have a mean of 98.6° F and a standard deviation of 0.60° F. If 36 adults are randomly selected, find the probability that their mean body temperature is greater than 98.8° F. Hint: You will need to use the sampling distribution of the sample mean. 0.8188 0.9772 0.9360 0.0228
The body temperatures of adults have a mean of 98.6° F and a standard deviation of...
The body temperatures of adults have a mean of 98.6° F and a standard deviation of 0.60° F. If 36 adults are randomly selected, find the probability that their mean body temperature is greater than 98.8° F. Hint: You will need to use the sampling distribution of the sample mean. 0.8188 0.9772 0.9360 0.0228
16. Assume that human body temperatures are normally distributed with a mean of 98.22°F and a...
16. Assume that human body temperatures are normally distributed with a mean of 98.22°F and a standard deviation of 0.64°F. a. A hospital uses 100.6°F as the lowest temperature considered to be a fever. What percentage of normal and healthy persons would be considered to have a​ fever? Does this percentage suggest that a cutoff of 100.6°F is​ appropriate? b. Physicians want to select a minimum temperature for requiring further medical tests. What should that temperature​ be, if we want...
#9. Assume that human body temperatures are normally distributed with a mean of 98.23 °F and...
#9. Assume that human body temperatures are normally distributed with a mean of 98.23 °F and a standard deviation of 0.63 °F. 1. A hospital uses 100.6 °F as the lowest temperature considered to be a fever. What percentage of normal and healthy persons would be considered to have a​ fever? Does this percentage suggest that a cutoff of 100.6 °F is​ appropriate? 2. Physicians want to select a minimum temperature for requiring further medical tests. What should that temperature​...
1.Human body temperatures are normally distributed with a mean of 98.2oF and standard deviation of 0.62oF....
1.Human body temperatures are normally distributed with a mean of 98.2oF and standard deviation of 0.62oF. a.What is the probability that a randomly selected person has a body temperature higher than 99.6*F? b.Lower than 95*F? c.Between 97*F and 100*F? 2.Adult males have an average overhead height of 215.5 cm with a standard deviation of 10.9 cm, and it is normally distributed. a.If one male is randomly selected, what is the probability that they will have an overhead reach greater than...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT