In: Finance
1)
i)
For compound interest accumulated amount A is:
A = P x (1+r/m) mxt
P = Principal amount = $ 500
r = Interest rate = 0.08
m = Annual compounding frequency = 1
t = Number of years invested = 7
A = $ 500 x (1+0.08)7
= $ 500 x (1.08)7
= $ 500 x 1.71382426877952
= $ 856.91213438976 or $ 856.91
The accumulated amount will be $ 856.91 at the end of 7 years.
ii)
Present value, PV can be computed as:
PV = FV/(1+r) n
FV = Future value = $ 500
r = Interest rate = 0.06
n = Number of periods = 10
PV = $ 500/ (1+0.06)10
= $ 500/ (1.06)10
= $ 500/ 1.79084769654285
= $ 279.197388457559 or $ 279.20
Present value is $ 279.20
iii)
A = P x (1+r/m) mxt
A = Accumulated amount = $ 1,039.50
P = Principal amount = $ 500
r = Interest rate = 0.05
m = Annual compounding frequency = 1
t = Number of years invested
$ 1,039.50 = $ 500 x (1+0.05) t
(1+0.05) t = $ 1,039.50 /$ 500
(1.05) t = 2.079
Taking log of both sides and solving for t, we get:
t x Log (1.05) = log 2.079
t x 0.02118929907= 0.31785448933
t = 0.31785448933/0.02118929907
= 15.00070806 or 15 years.
It will take 15 years for $ 500 to grow to $ 1,039.50
iv)
A = P x (1+r/m) mxt
P = $ 5,000; r = 0.1; m =1; t = 10
A = $ 5,000 x (1+0.1)10
= $ 5,000 x (1.1)10
= $ 5,000 x 2.5937424601
= $ 12,968.7123005 or $ 12,968.71
Accumulated amount will be $ 12,968.71 at the end of 10 years.
v)
PV = FV/(1+r) n
FV = $ 800; r = 0.1; n = 10
PV = $ 800/ (1+0.1)10
= $ 800/ (1.1)10
= $ 800/ 2.5937424601
= $ 308.434631543625 or $ 308.43
Present value is $ 308.43
vi)
A = P x (1+r/m) mxt
A = $ 1,948; P = $ 500; m =1; t = 12
$ 1,948 = $ 500 x (1+ r)12
(1+ r)12 = $ 1,948/ $ 500
(1+ r)12 = 3.896
1+ r = (3.896)1/12 = (3.896) 0.083333333
= 1.12000057512913
r = 1.12000057512913 – 1
= 0.12000057512913 or 12 %
Required interest rate is 12 %.