Question

In: Physics

A 1100-kg car travels at 26 m/s and then quickly stops in 3.4 s to avoid...

A 1100-kg car travels at 26 m/s and then quickly stops in 3.4 s to avoid an obstacle.
What is the initial speed of the car in mph?
mph

Tries 0/2


What is the initial kinetic energy of the car in kilojoules (kJ)?
kJ

Tries 0/2


What is the initial momentum of the car?
kg*m/s

Tries 0/2

What is the magnitude of the impulse necessary to stop the car?
kg*m/s

Tries 0/2


What is the magnitude of the average force in kiloNewtons (kN) that stopped the car?
kN

Tries 0/2


What is the magnitude of the average acceleration that stopped the car?
m/s2

Solutions

Expert Solution


Related Solutions

what average force is required to atop an 1100 kg car in 8.0 s if the...
what average force is required to atop an 1100 kg car in 8.0 s if the car is traveling at 72 mph? determine the density of a 10.2 g sphere that has a radius of 5m. if the height of the bannister was 5.68m, the time keepers reaction time was 0.2 s, and the time it took the ball to reach the ground was 1.25s. determine acceleration of gravity.
A car enters an onramp of a highway at 21.8 m/s and travels at a constant...
A car enters an onramp of a highway at 21.8 m/s and travels at a constant velocity for 3.63 s before speeding up to a final velocity of 32.1 m/s in 6.90 s to merge with highway traffic. The total time taken for the trip is 10.5 s. Assume the car doesn't have to change direction for this motion (1D motion). Draw a picture of this motion and create a coordinate system Please reverse the direction of your coordinate system....
A 2290 kg car traveling at 11.7 m/s collides with a 2620 kg car that is...
A 2290 kg car traveling at 11.7 m/s collides with a 2620 kg car that is initially at rest at the stoplight. The cars stick together and move 3.30 m before friction causes them to stop. Determine the coefficient of kinetic friction betwen the cars and the road, assuming that the negative acceleration is constant and that all wheels on both cars lock at the time of impact.
A 3.4 kg block moving with a velocity of +4.9 m/s makes an elastic collision with...
A 3.4 kg block moving with a velocity of +4.9 m/s makes an elastic collision with a stationary block of mass 1.8 kg. (a) Use conservation of momentum and the fact that the relative speed of recession equals the relative speed of approach to find the velocity of each block after the collision. m/s (for the 3.4 kg block) m/s (for the 1.8 kg block) (b) Check your answer by calculating the initial and final kinetic energies of each block....
A 1700 kg car moving east at 17 m/s collides with a 1800 kg car moving...
A 1700 kg car moving east at 17 m/s collides with a 1800 kg car moving south at 20 m/s, and the two cars stick together. Consider east the positive x-direction and north the positive y-direction. a) What is the x-component of the initial momentum before the collision? ( -7100 kg·m/s, 64900 kg·m/s or 28900 kg·m/s) b) What is the y-component of the initial momentum before the collision? (-36000 kg·m/s, -7100 kg·m/s, 64900 kg·m/s or 36000 kg·m/s) c) What is...
A 5 kg block starting with an initial velocity of 7.69 m/s travels a distance of...
A 5 kg block starting with an initial velocity of 7.69 m/s travels a distance of x m along a rough surface that has a coefficient of kinetic friction of μ=0.15. It then travels up a frictionless ramp at an angle of 17.0⁰ to a height of 1.38 m until it stops. How far does it travel along the rough surface - what is the x? (Note there may be more information provided in the problem statement than you need...
Brakes are applied to a 3000-kg car moving at 30 m/s. The car skids 200 m...
Brakes are applied to a 3000-kg car moving at 30 m/s. The car skids 200 m and stops. What is the coefficient of kinetic friction?
A car starts from rest and travels east with an acceleration of 4x10^-3 m/s^2. Another car...
A car starts from rest and travels east with an acceleration of 4x10^-3 m/s^2. Another car travels towards west at a constant speed of 70kph. The two cars are 100km apart. a. What is the time it takes for the two cars to meet b. time it takes for them to be 100km apart for the second time
A 900-kg car traveling east at 20.0 m/s collides with a 750-kg car traveling north at...
A 900-kg car traveling east at 20.0 m/s collides with a 750-kg car traveling north at 15.o m/s. The cars stick together. Assume that any otherunbalanced forces are negligible. (Draw Diagrams) (a) What is the speed of the wreckage just after the collision? (b) In what directions does the wreckage move just after the collision? (c) What is the total Kinetick Energy before the collision? (d) What is the total Kinetic Energy after?
A 1410-kg car moving east at 17.0 m/s collides with a 1880-kg car moving south at...
A 1410-kg car moving east at 17.0 m/s collides with a 1880-kg car moving south at 15.0 m/s, and the two cars connect together. a) What is the magnitude of the velocity of the cars right after the collision? (m/s) b) What is the direction of the cars right after the collision? Enter the angle in degrees where positive indicates north of east and negative indicates south of east. (°) c) How much kinetic energy was converted to another form...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT