In: Finance
A 18 year loan is being repaid with level payments at the end of each month. The loan rate of interest is 15.6% compounded monthly. In which month is the interest portion approximately equal to 5 times principal the portion? Give an integer answer.
Let us assume $ 100000 as loan
EMI:
EMI = Loan / PVAF (r%, n)
PVAF = SUm [ PVF(r%, n) ]
PVF(r%, n) = 1 / ( 1 + r)^n
r = Int rate per period
n = No. of periods
= $ 100000 / PVAF(1.3%, 216 )
= $ 100000 / 72.1979
= $ 1385.08
Loan Amortization:
As the full table is not supported by server, I am able to display portion where Int/ Principal is 5.
Month | Opening Bal | Instalment | Int | Principal Repay | Clsoing Bal | Int/ Principal |
75 | $ 89,523.51 | $ 1,385.08 | $ 1,163.81 | $ 221.28 | $ 89,302.23 | 5.26 |
76 | $ 89,302.23 | $ 1,385.08 | $ 1,160.93 | $ 224.15 | $ 89,078.08 | 5.18 |
77 | $ 89,078.08 | $ 1,385.08 | $ 1,158.02 | $ 227.07 | $ 88,851.01 | 5.10 |
78 | $ 88,851.01 | $ 1,385.08 | $ 1,155.06 | $ 230.02 | $ 88,621.00 | 5.02 |
79 | $ 88,621.00 | $ 1,385.08 | $ 1,152.07 | $ 233.01 | $ 88,387.99 | 4.94 |
80 | $ 88,387.99 | $ 1,385.08 | $ 1,149.04 | $ 236.04 | $ 88,151.95 | 4.87 |
81 | $ 88,151.95 | $ 1,385.08 | $ 1,145.98 | $ 239.11 | $ 87,912.84 | 4.79 |
82 | $ 87,912.84 | $ 1,385.08 | $ 1,142.87 | $ 242.21 | $ 87,670.63 | 4.72 |
83 | $ 87,670.63 | $ 1,385.08 | $ 1,139.72 | $ 245.36 | $ 87,425.27 | 4.65 |
84 | $ 87,425.27 | $ 1,385.08 | $ 1,136.53 | $ 248.55 | $ 87,176.71 | 4.57 |
85 | $ 87,176.71 | $ 1,385.08 | $ 1,133.30 | $ 251.78 | $ 86,924.93 | 4.50 |
86 | $ 86,924.93 | $ 1,385.08 | $ 1,130.02 | $ 255.06 | $ 86,669.87 | 4.43 |
87 | $ 86,669.87 | $ 1,385.08 | $ 1,126.71 | $ 258.37 | $ 86,411.50 | 4.36 |
Pls do rate, if the answer is correct and comment, if any further assistance is required.