In: Statistics and Probability
Find b0, b1, and b2 to fit the second degree parabola =b0+b1 x+b2 x2 for the following data:
x |
1 |
2 |
3 |
4 |
y |
1.7 |
1.8 |
2.3 |
3.2 |
b0 = -2, b1=-0.5, b2 = -0.2 |
||
b0 =2, b1= -0.5, b2 = 0.2 |
||
b0 =2, b1=0.5, b2 =0.2 |
||
b0 =2, b1=0.5, b2 = -0.2 |
Please note x2 = x2
X3 = x3
And so on.
The equation is y=a+bx+cx2 and the normal equations are
∑y=an+b∑x+c∑x2
∑xy=a∑x+b∑x2+c∑x3
∑x2y=a∑x2+b∑x3+c∑x4
The values are calculated using the following table
x |
y |
x2 |
x3 |
x4 |
x⋅y |
x2⋅y |
1 |
1.7 |
1 |
1 |
1 |
1.7 |
1.7 |
2 |
1.8 |
4 |
8 |
16 |
3.6 |
7.2 |
3 |
2.3 |
9 |
27 |
81 |
6.9 |
20.7 |
4 |
3.2 |
16 |
64 |
256 |
12.8 |
51.2 |
--- |
--- |
--- |
--- |
--- |
--- |
--- |
∑x=10 |
∑y=9 |
∑x2=30 |
∑x3=100 |
∑x4=354 |
∑x⋅y=25 |
∑x2⋅y=80.8 |
Substituting these values in the normal equations
4a+10b+30c=9
10a+30b+100c=25
30a+100b+354c=80.8
Solving these 3 equations,
Total Equations are 3
4a+10b+30c=9→(1)
10a+30b+100c=25→(2)
30a+100b+354c=80.8→(3)
Select the equations (1) and (2), and eliminate the variable
a.
4a+10b+30c= 9 |
×5→ |
20a |
+ |
50b |
+ |
150c |
= |
45 |
|||
− |
|||||||||||
10a+30b+100c = 25 |
×2→ |
20a |
+ |
60b |
+ |
200c |
= |
50 |
|||
- |
10b |
- |
50c |
= |
-5 |
→ (4) |
Select the equations (1) and (3), and eliminate the variable
a.
4a+10b+30c = 9 |
×15→ |
60a |
+ |
150b |
+ |
450c |
= |
135 |
|||
− |
|||||||||||
30a+100b+354c = 80.8 |
× 2→ |
60a |
+ |
200b |
+ |
708c |
= |
161.6 |
|||
- |
50b |
- |
258c |
= |
-26.6 |
→ (5) |
Select the equations (4) and (5), and eliminate the variable
b.
-10b-50c = -5 |
× 5→ |
- |
50b |
- |
250c |
= |
-25 |
||||
− |
|||||||||||
-50b-258c= -26.6 |
× 1→ |
- |
50b |
- |
258c |
= |
-26.6 |
||||
8c |
= |
1.6 |
→ (6) |
Now use back substitution method
From (6)
8c=1.6
⇒c=1.68=0.2
From (4)
-10b-50c=-5
⇒-10b-50(0.2)=-5
⇒-10b-10=-5
⇒-10b=-5+10=5
⇒b=5-10=-0.5
From (1)
4a+10b+30c=9
⇒4a+10(-0.5)+30(0.2)=9
⇒4a+1=9
⇒4a=9-1=8
⇒a=84=2
Solution using the Elimination Method.
a=2,b=-0.5,c=0.2
Now substituting these values in the equation is y=a+bx+cx2, we
get
y = 2 - 0.5 x + 0.2 x2
Please like