In: Statistics and Probability
Find b0, b1, and b2 to fit the second degree parabola =b0+b1 x+b2 x2 for the following data:
| 
 x  | 
 1  | 
 2  | 
 3  | 
 4  | 
| 
 y  | 
 1.7  | 
 1.8  | 
 2.3  | 
 3.2  | 
| 
 b0 = -2, b1=-0.5, b2 = -0.2  | 
||
| 
 b0 =2, b1= -0.5, b2 = 0.2  | 
||
| 
 b0 =2, b1=0.5, b2 =0.2  | 
||
| 
 b0 =2, b1=0.5, b2 = -0.2  | 
Please note x2 = x2
X3 = x3
And so on.
The equation is y=a+bx+cx2 and the normal equations are
∑y=an+b∑x+c∑x2
∑xy=a∑x+b∑x2+c∑x3
∑x2y=a∑x2+b∑x3+c∑x4
The values are calculated using the following table
| 
 x  | 
 y  | 
 x2  | 
 x3  | 
 x4  | 
 x⋅y  | 
 x2⋅y  | 
| 
 1  | 
 1.7  | 
 1  | 
 1  | 
 1  | 
 1.7  | 
 1.7  | 
| 
 2  | 
 1.8  | 
 4  | 
 8  | 
 16  | 
 3.6  | 
 7.2  | 
| 
 3  | 
 2.3  | 
 9  | 
 27  | 
 81  | 
 6.9  | 
 20.7  | 
| 
 4  | 
 3.2  | 
 16  | 
 64  | 
 256  | 
 12.8  | 
 51.2  | 
| 
 ---  | 
 ---  | 
 ---  | 
 ---  | 
 ---  | 
 ---  | 
 ---  | 
| 
 ∑x=10  | 
 ∑y=9  | 
 ∑x2=30  | 
 ∑x3=100  | 
 ∑x4=354  | 
 ∑x⋅y=25  | 
 ∑x2⋅y=80.8  | 
Substituting these values in the normal equations
4a+10b+30c=9
10a+30b+100c=25
30a+100b+354c=80.8
Solving these 3 equations,
Total Equations are 3
4a+10b+30c=9→(1)
10a+30b+100c=25→(2)
30a+100b+354c=80.8→(3)
Select the equations (1) and (2), and eliminate the variable
a.
| 
 4a+10b+30c= 9  | 
 ×5→  | 
 20a  | 
 +  | 
 50b  | 
 +  | 
 150c  | 
 =  | 
 45  | 
|||
| 
 −  | 
|||||||||||
| 
 10a+30b+100c = 25  | 
 ×2→  | 
 20a  | 
 +  | 
 60b  | 
 +  | 
 200c  | 
 =  | 
 50  | 
|||
| 
 -  | 
 10b  | 
 -  | 
 50c  | 
 =  | 
 -5  | 
 → (4)  | 
Select the equations (1) and (3), and eliminate the variable
a.
| 
 4a+10b+30c = 9  | 
 ×15→  | 
 60a  | 
 +  | 
 150b  | 
 +  | 
 450c  | 
 =  | 
 135  | 
|||
| 
 −  | 
|||||||||||
| 
 30a+100b+354c = 80.8  | 
 × 2→  | 
 60a  | 
 +  | 
 200b  | 
 +  | 
 708c  | 
 =  | 
 161.6  | 
|||
| 
 -  | 
 50b  | 
 -  | 
 258c  | 
 =  | 
 -26.6  | 
 → (5)  | 
Select the equations (4) and (5), and eliminate the variable
b.
| 
 -10b-50c = -5  | 
 × 5→  | 
 -  | 
 50b  | 
 -  | 
 250c  | 
 =  | 
 -25  | 
||||
| 
 −  | 
|||||||||||
| 
 -50b-258c= -26.6  | 
 × 1→  | 
 -  | 
 50b  | 
 -  | 
 258c  | 
 =  | 
 -26.6  | 
||||
| 
 8c  | 
 =  | 
 1.6  | 
 → (6)  | 
Now use back substitution method
From (6)
8c=1.6
⇒c=1.68=0.2
From (4)
-10b-50c=-5
⇒-10b-50(0.2)=-5
⇒-10b-10=-5
⇒-10b=-5+10=5
⇒b=5-10=-0.5
From (1)
4a+10b+30c=9
⇒4a+10(-0.5)+30(0.2)=9
⇒4a+1=9
⇒4a=9-1=8
⇒a=84=2
Solution using the Elimination Method.
a=2,b=-0.5,c=0.2
Now substituting these values in the equation is y=a+bx+cx2, we
get
y = 2 - 0.5 x + 0.2 x2
Please like