Question

In: Math

. The joint probability density function of X and Y is given by ?(?, ?) =...

. The joint probability density function of X and Y is given by

?(?, ?) = { ??^2? ?? 0 ≤ ? ≤ 2, 0 ≤ ?, ??? ? + ? ≤ 1

0 ??ℎ??????

(a) Determine the value of c.

(b) Find the marginal probability density function of X and Y.

(c) Compute ???(?, ?).

(d) Compute ???(?^2 + ?).

(e) Determine if X and Y are independent

Solutions

Expert Solution


Related Solutions

Suppose that the joint probability density function of ˜ (X, Y) is given by:´ f X,Y...
Suppose that the joint probability density function of ˜ (X, Y) is given by:´ f X,Y (x,y) = 4x/y3 I(0.1)(x), I (1, ∞)(y). Calculate a) P(1/2 < X < 3/4, 0 < Y ≤ 1/3). b) P(Y > 5). c) P(Y > X).
If the joint probability density function of the random variables X and Y is given by...
If the joint probability density function of the random variables X and Y is given by f(x, y) = (1/4)(x + 2y) for 0 < x < 2, 0 < y < 1, 0 elsewhere (a) Find the conditional density of Y given X = x, and use it to evaluate P (X + Y/2 ≥ 1 | X = 1/2) (b) Find the conditional mean and the conditional variance of Y given X = 1/2 (c) Find the variance...
The joint probability density function for two random variables X and Y is given as, fx,y...
The joint probability density function for two random variables X and Y is given as, fx,y (x, y) = (2/3)(1 + 2xy3 ), 0 < x < 1, 0 < y < 1 (a) Find the marginal probability density functions for X and Y . (b) Are X and Y independent? Justify your answer. (c) Show that E[X] = 4/9 and E[Y ] = 7/15 . (d) Calculate Cov(X, Y )
The joint probability density function (PDF) of two random variables (X,Y) is given by ???(?,?) =...
The joint probability density function (PDF) of two random variables (X,Y) is given by ???(?,?) = { 1, 0 ≤ ? ≤ 2,0 ≤ ? ≤ 1,2? ≤ ? 0, otherwise 1) Find the correlation coefficient ??? between the two random variables X and Y Find the probability P(Y>X/2). help please asap
Suppose that X and Y have the following joint probability density function. f (x, y) =...
Suppose that X and Y have the following joint probability density function. f (x, y) = (3/394)*y, 0 < x < 8, y > 0, x − 3 < y < x + 3 (a)   Find E(XY). (b)   Find the covariance between X and Y.
. Let X and Y be a random variables with the joint probability density function fX,Y...
. Let X and Y be a random variables with the joint probability density function fX,Y (x, y) = { 1, 0 < x, y < 1 0, otherwise } . a. Let W = max(X, Y ) Compute the probability density function of W. b. Let U = min(X, Y ) Compute the probability density function of U. c. Compute the probability density function of X + Y ..
Let (X, Y) be a random vector with a function of the joint density given by...
Let (X, Y) be a random vector with a function of the joint density given by ˜ fX, Y (x, y) = k (2x + y) I (2,6) (x) I (0.5) (y) a) Determine k so that f X, Y (x, y) is a true probability density function joint quality. b) Determine the marginal probability density functions of X and Y. c) Calculate P (3 <X <4, Y> 2). d) Calculate P (X + Y> 4).
Let (X, Y) be a random vector with a function of the joint density given by...
Let (X, Y) be a random vector with a function of the joint density given by ˜ fX, Y (x, y) = k (2x + y) I (2,6) (x) I (0.5) (y) a) Determine k so that f X, Y (x, y) is a true probability density function joint quality. b) Determine the marginal probability density functions of X and Y. c) Calculate P (3 <X <4, Y> 2). d) Calculate P (X + Y> 4).
Consider a continuous random vector (Y, X) with joint probability density function f(x, y) = 1...
Consider a continuous random vector (Y, X) with joint probability density function f(x, y) = 1                            for 0 < x < 1, x < y < x + 1. What is the marginal density of X and Y? Use this to compute Var(X) and Var(Y) Compute the expectation E[XY] Use the previous results to compute the correlation Corr (Y, X) Compute the third moment of Y, i.e., E[Y3]
Consider a continuous random vector (Y, X) with joint probability density function f(x, y) = 1...
Consider a continuous random vector (Y, X) with joint probability density function f(x, y) = 1 for 0 < x < 1, x < y < x + 1. A. What is the marginal density of X and Y ? Use this to compute Var(X) and Var(Y). B. Compute the expectation E[XY] C. Use the previous results to compute the correlation Corr(Y, X). D. Compute the third moment of Y , i.e., E[Y3].
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT