In: Math
1. Obtain a linear regression equation for the data to predict the mean temperature values for any given CO2 level. How good is the linear fit for this data? Explain using residual plot and R-square value. To draw residual plot, compute the estimated temperatures for every value of the CO2 level using the regression equation. Then compute the difference between observed (y) and estimated temperature values (called residual; ). Plot the residuals versus CO2 level (called a residual plot).
320.09 | 8 |
321.44 | 9.29 |
322.17 | 9.39 |
323.09 | 8.61 |
324.68 | 8.95 |
325.74 | 8.36 |
326.33 | 9.11 |
327.52 | 8.43 |
329.78 | 8.39 |
330.24 | 8.18 |
331.18 | 9.06 |
332.09 | 9.12 |
333.88 | 8.11 |
335.43 | 7.51 |
336.83 | 7.42 |
338.78 | 7.78 |
340.17 | 8.2 |
340.99 | 8.6 |
342.97 | 8.9 |
344.23 | 8.04 |
345.94 | 7.18 |
347.26 | 7.89 |
349.06 | 7.66 |
351.56 | 8.9 |
352.91 | 9.68 |
354.21 | 9.98 |
355.54 | 8.88 |
356.29 | 9.46 |
356.97 | 8.83 |
358.69 | 10.29 |
360.71 | 10.27 |
362.41 | 8.01 |
363.53 | 9.28 |
366.64 | 9.3 |
368.16 | 9.78 |
369.45 | 9.88 |
371.12 | 9.6 |
373.24 | 9.73 |
375.88 | 10.35 |
377.6 | 9.48 |
379.87 | 9.53 |
381.89 | 9.94 |
383.79 | 10.59 |
i have considered regression equation with no constant or intercept
x=carbondioxide values;dependent variable
y=temparature;independent variable
my estimated regression line is
R square value is 0.993853
The definition of R-squared is fairly straight-forward; it is the percentage of the response variable variation that is explained by a linear model. Or:
R-squared = Explained variation / Total variation
R-squared is always between 0 and 100%:
Predicted Y | Residuals |
8.199514 | -0.19951 |
8.234096 | 1.055904 |
8.252796 | 1.137204 |
8.276363 | 0.333637 |
8.317093 | 0.632907 |
8.344246 | 0.015754 |
8.35936 | 0.75064 |
8.389843 | 0.040157 |
8.447736 | -0.05774 |
8.459519 | -0.27952 |
8.483599 | 0.576401 |
8.506909 | 0.613091 |
8.552763 | -0.44276 |
8.592468 | -1.08247 |
8.628331 | -1.20833 |
8.678282 | -0.89828 |
8.713889 | -0.51389 |
8.734894 | -0.13489 |
8.785615 | 0.114385 |
8.817891 | -0.77789 |
8.861695 | -1.68169 |
8.895508 | -1.00551 |
8.941618 | -1.28162 |
9.005658 | -0.10566 |
9.04024 | 0.63976 |
9.073542 | 0.906458 |
9.107611 | -0.22761 |
9.126823 | 0.333177 |
9.144242 | -0.31424 |
9.188302 | 1.101698 |
9.240047 | 1.029953 |
9.283595 | -1.27359 |
9.312285 | -0.03229 |
9.391952 | -0.09195 |
9.430889 | 0.349111 |
9.463934 | 0.416066 |
9.506713 | 0.093287 |
9.561019 | 0.168981 |
9.628646 | 0.721354 |
9.672706 | -0.19271 |
9.730855 | -0.20086 |
9.7826 | 0.1574 |
9.831271 | 0.758729 |
here the residuals are scattered around without any pattern this indicates that our fit is good
if we consider with a constant
estimated equation:
R square value is 0.3398
our model poorly explains 33.98% of variability
Predicted Y | Residuals |
8.160634 | -0.16063 |
8.196994 | 1.093006 |
8.216655 | 1.173345 |
8.241433 | 0.368567 |
8.284256 | 0.665744 |
8.312805 | 0.047195 |
8.328696 | 0.781304 |
8.360746 | 0.069254 |
8.421614 | -0.03161 |
8.434004 | -0.254 |
8.459321 | 0.600679 |
8.48383 | 0.63617 |
8.53204 | -0.42204 |
8.573786 | -1.06379 |
8.611492 | -1.19149 |
8.664011 | -0.88401 |
8.701448 | -0.50145 |
8.723533 | -0.12353 |
8.77686 | 0.12314 |
8.810796 | -0.7708 |
8.856851 | -1.67685 |
8.892403 | -1.0024 |
8.940882 | -1.28088 |
9.008214 | -0.10821 |
9.044574 | 0.635426 |
9.079587 | 0.900413 |
9.115407 | -0.23541 |
9.135607 | 0.324393 |
9.153922 | -0.32392 |
9.200246 | 1.089754 |
9.254651 | 1.015349 |
9.300437 | -1.29044 |
9.330602 | -0.0506 |
9.414363 | -0.11436 |
9.455301 | 0.324699 |
9.490045 | 0.389955 |
9.535023 | 0.064977 |
9.592121 | 0.137879 |
9.663224 | 0.686776 |
9.709548 | -0.22955 |
9.770686 | -0.24069 |
9.825091 | 0.114909 |
9.876263 | 0.713737 |
here the residuals are scattered around without any pattern this indicates that our fit is good