Question

In: Physics

You are looking toward a concave spherical mirror whose radius of curvature is 20 cm. Your...

You are looking toward a concave spherical mirror whose radius of curvature is 20 cm. Your line of sight is parallel to (but not along) the principal axis. How far from the mirror does your line of sight cross the principal axis?

Solutions

Expert Solution

We use the mirror formula to find the distance at which the line of sight cross the principal axis.

The mirror formula is

1/u + 1/v = 1/f     ........(1)

u is the object distance, v is the image distance, f is the focal length of the mirror.

We will follow the sign convention that the distance measured to the left of mirror are negative and the distance measured to the right of mirror are positive.

In our case since we are looking parallel to the concave mirror our line of sight is at infinity. So u = - ,

also we know that for a spherical mirror f = R/2

R is the radius of curvature of lens. Given R = 20 cm

f = 20/2

f = -10 cm (since the focal legth is to the left of the mirror in case of concave lens

We need to find the value of v. Putting all the values in eq. (1) we get

1/- + 1/v = 1/(-10)

0 + 1/v = -1/10

1/v = -1/10

v = -10 cm

Therefore the line of sight crossed the principal axis at a distance of 10 cm. The negative sign indicates that the distance is to the left of the mirror.


Related Solutions

a concave spherical mirror has a radius of curvature of 7.00 cm. A)calculate the location of...
a concave spherical mirror has a radius of curvature of 7.00 cm. A)calculate the location of the imahe formed by qn 5.00 mm tall object whose distance from the mirror is 14 cm. answer in cm. b)calculate the size of the image formed by an 5 mm tall objext whose distanxe from the mirror is 7 cm. answer in mm. c)calculate the location of the image formed by a 5.00 mm tall object whose distance from the mirror is 1.75...
When you hold a spherical concave mirror with a 48.2-cm radius of curvature in front of between your face
Part A When you hold a spherical concave mirror with a 48.2-cm radius of curvature in front of between your face, you see an image of your face that is 61.8 cm in front of the mirror. What is the distance n the mirror and your face? Part B When you hold a spherical concave mirror with a 48.2-cm radius of curvature 39.5 cm in front of your face, you see an image of your face that is 61.8 cm in front of...
A convex mirror has a radius of curvature whose magnitude is 43 cm. The mirror is...
A convex mirror has a radius of curvature whose magnitude is 43 cm. The mirror is positioned on a horizontal optical bench with its front surface at 0 cm. A 13.5 cm long fluorescent lamp oriented vertically is placed at +90 cm. What is the focal length of the mirror? Tries 0/5 At what distance from the mirror can we find a sharp image of the lamp? Tries 0/5 How tall is the image of the lamp? Tries 0/5 If...
A convex spherical mirror has a radius of curvature of 9.60 cm. A) Calculate the location...
A convex spherical mirror has a radius of curvature of 9.60 cm. A) Calculate the location of the image formed by an 7.65-mm-tall object whose distance from the mirror is 18.0 cm. Answer in cm. B) Calculate the size of the image. Answer in mm. C) Calculate the location of the image formed by an 7.65-mm-tall object whose distance from the mirror is 10.0 cm. Answer in cm. D) Calculate the size of the image. Answer in mm. E) Calculate...
An upright object is placed in front of a concave mirror. The radius of curvature of...
An upright object is placed in front of a concave mirror. The radius of curvature of mirror is 40 cm. (a) Where should the object be placed in order to obtain an image that is twice as large as the object? (b) Is the image upright or inverted? SHOW ALL STEPS & DIAGRAM
A match 5 cm long is placed 20 cm in front of a concave mirror whose...
A match 5 cm long is placed 20 cm in front of a concave mirror whose focal length is 50 cm. Find the location, size, and nature of the image. )
A concave spherical mirror with a focal length of 12 cm faces a plane mirror with...
A concave spherical mirror with a focal length of 12 cm faces a plane mirror with the optical axis of the spherical mirror perpendicular to the plane mirror. A small object is placed at point P on the optical axis, 11 cm from the plane mirror and 29 cm from the vertex of the spherical mirror. Find the distance from the plane mirror to the three nearest images. (Enter your answers from smallest to largest.) first nearest image second nearest...
a) In front of spherical concave mirror of radius 26cm, you position an object of height...
a) In front of spherical concave mirror of radius 26cm, you position an object of height 2.6cm somewhere along the principal axis. The result image has a height of 0.8cm. How far from the mirror is the object located? b) In front of a spherical convex mirror of radius 26cm, you position an object of height 2.6cm somewhere already no the principal axis. The resultant image has a height of 0.8cm. How far from the mirror is the object located?...
An object is placed 0.14 m in front of a concave mirror whose radius of curvature is 0.10 m. Calculate the image distance.
An object is placed 0.14 m in front of a concave mirror whose radius of curvature is 0.10 m. Calculate the image distance.  5.154e-2 m7.778e-2 m12.473e-2 m6.895e-2 m9.131e-2 mAn object of height 0.045 m is placed 0.2 m in front of a convex mirror whose radius of curvature is 0.10 m. Calculate the height of the image.0.9e-2 m1.653e-2 m1.102e-2 m1.288e-2 m0.775e-2 m
A concave mirror (f = 44 cm) produces an image whose distance from the mirror is...
A concave mirror (f = 44 cm) produces an image whose distance from the mirror is one-fourth the object distance. (a) Determine the object distance. cm (b) Determine the (positive) image distance. cm
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT