Question

In: Physics

Determine the order in which the following objects released from the same height, initially at rest...

Determine the order in which the following objects released from the same height, initially at rest and rolling down an incline without slipping, will reach the bottom: A hollow sphere, a solid sphere, a hollow pipe, and a solid cylinder.

Please explain in simplest terms and give an example using units given.

Solutions

Expert Solution

solid sphere will reach first.


for solid sphere,

Apply conservation of energy

final kinetic energy = initial potential energy

(1/2)*m*v^2 + (1/2)*I*w^2 = m*g*h

(1/2)*m*v^2 + (1/2)*(2/5)m*r^2*w^2 = m*g*h

(1/2)*m*v^2 + (1/5)*m*(r*w)^2 = m*g*h

(1/2)*m*v^2 + (1/5)*m*v^2 = m*g*h

(10/7)m*v^2 = m*g*h

v_solidsphere = sqrt(7*g*h/10)

for hollow sphere,

Apply conservation of energy

final kinetic energy = initial potential energy

(1/2)*m*v^2 + (1/2)*I*w^2 = m*g*h

(1/2)*m*v^2 + (1/2)*(2/3)m*r^2*w^2 = m*g*h

(1/2)*m*v^2 + (1/3)*m*(r*w)^2 = m*g*h

(1/2)*m*v^2 + (1/3)*m*v^2 = m*g*h

(5/6)m*v^2 = m*g*h

v_hollowsphere = sqrt(6*g*h/5)


for hollow pipe,

Apply conservation of energy

final kinetic energy = initial potential energy

(1/2)*m*v^2 + (1/2)*I*w^2 = m*g*h

(1/2)*m*v^2 + (1/2)*m*r^2*w^2 = m*g*h

(1/2)*m*v^2 + (1/2)*m*(r*w)^2 = m*g*h

(1/2)*m*v^2 + (1/2)*m*v^2 = m*g*h

m*v^2 = m*g*h

v_hollowpipe = sqrt(g*h)


for solid cyllinder,

Apply conservation of energy

final kinetic energy = initial potential energy

(1/2)*m*v^2 + (1/2)*I*w^2 = m*g*h

(1/2)*m*v^2 + (1/2)*m*r^2*w^2 = m*g*h

(1/2)*m*v^2 + (1/2)*(1/2)m*(r*w)^2 = m*g*h

(1/2)*m*v^2 + (1/4)*m*v^2 = m*g*h

(3/4)m*v^2 = m*g*h

v_solidcyllinder = sqrt(4*g*h/3)


clearly,

v_hollowpipe < v_hollowsphere < v_solidcyllinder < v_soildsphere

so, solid sphere will reach first.


Related Solutions

Three different-shapes rolling objects of the same radius and mass are released from rest at the...
Three different-shapes rolling objects of the same radius and mass are released from rest at the same elevation at the same time and roll without slipping) down an inclined plane, the one which finishes first is the one with Select one: a. The smallest moment of inertia b. The second- smallest moment of inertia c. They all finish at the same time d. The second- largest moment of inertia e. The largest moment of inertia
Two objects, A and B, are released from rest in free space (no other masses are...
Two objects, A and B, are released from rest in free space (no other masses are near). Object A has a greater mass than object B. They accelerate toward each other under the action of their mutual gravitational attraction. a. On which object is the greater work done? b. At the instant just before they hit, which object will have the momentum with the greatest magnitude? c. At the instant just before they hit, which object will have the greater...
The figure shows a 100-kg block being released from rest from a height of 1.0 m.
The figure shows a 100-kg block being released from rest from a height of 1.0 m. It then takes it 0.90 s to reach the floor. What is the mass of the other block? The pulley has no appreciable mass or friction. A. 60 kg B. 48 kg C. 54 kg D. 42 kg             The figure shows a 100 - kg block being released from rest from a height of 1.0 m. It then takes it 0.90 s to reach...
Make upward positive. A ball of mass 9.49 kg is released from rest at height 9.45...
Make upward positive. A ball of mass 9.49 kg is released from rest at height 9.45 m above the floor. It falls, hits the ground, and rebounds to height 3.14 m above the floor. Assume none of the losses are due to air friction. Find the impulse, in N-s, exerted by the floor on the ball. The sign of your answer will give the direction of the impulse.
1. If two objects at a certain height are thrown horizontally at the same time with...
1. If two objects at a certain height are thrown horizontally at the same time with opposite speeds of 50 m / s and 18 m / s in opposite directions, how many seconds later will the angle between the velocity vectors of these objects be 90 Degree?
A pendulum 2.10 m long is released (from rest) at an angle θ0=30.0∘. B. Determine the...
A pendulum 2.10 m long is released (from rest) at an angle θ0=30.0∘. B. Determine the speed of the 50.0 g bob at θ=15.0∘. C.Determine the speed of the 50.0 g bob at θ=−15.0∘ (i.e., on the opposite side). D.Determine the tension in the cord at the lowest point (θ=0). E. Determine the tension in the cord at the θ=15∘. F. Determine the tension in the cord at θ=−15.0∘.
A 10 kg rock is released from a height of 27 m. In the following answer...
A 10 kg rock is released from a height of 27 m. In the following answer boxes, enter the total mechanical energy of the rock at each of the following heights: 13.50 m, 9.00 m, 6.75 m. Neglect air-resistance in your calculations.
2. If each of the following objects are rotating with the same angular velocity, ?, which...
2. If each of the following objects are rotating with the same angular velocity, ?, which would be the hardest to stop? (i.e., require the largest amount of work). A hoop with mass (1/2)M and radius 2R rotating about its cylinder axis. A solid cylinder with mass 4M and radius (3/4)R rotating about its cylinder axis. A solid sphere with mass 8M and radius (2/3)R rotating about any diameter. A hoop with mass 4M and radius (1/2)R rotating about its...
a proton is released from rest at a positivity charged plate that is in a parallel...
a proton is released from rest at a positivity charged plate that is in a parallel plate capacitor . it hits the negative charged plate after 2.54 x10^-6 s. the electric field is 134 N/C between the plates 1) find the magnititude of the surface charge density at each plate 2) what is the magnitude of force that the proton feels moving through plates 3)what is the proton’s final speed as it hits the negative plate 4)what is the potential...
A small box is released from rest at the top of a frictionless ramp that is...
A small box is released from rest at the top of a frictionless ramp that is inclined at 36.9 0 above the horizontal. How long does it take the box to travel 8.00 m to the bottom of the incline?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT