Question

In: Physics

The lens and mirror are sperated by d=1.0 m and have focal lengths of 80.0 cm...

The lens and mirror are sperated by d=1.0 m and have focal lengths of 80.0 cm and 50.0 cm, respectively. An object is placed p=1.0 m to the left of the lens as shown.

a) Locate the final image, formed by light that has gone through the lens twice

b) Determine the overall magnification of the image.

c) is the final image inverted or upright?

ANS q=160 cm M= -0.8 Inverted

Solutions

Expert Solution

I hope it was helpful..


Related Solutions

The lens and mirror in Figure P23.51 are separated by 1.00 m and have focal lengths...
The lens and mirror in Figure P23.51 are separated by 1.00 m and have focal lengths of +80.4 cm and -50.8 cm, respectively. If an object is placed 1.00 m to the left of the lens, locate the final image. Figure P23.51 q3 =  cm  ---Location--- to the right of the lens to the left of the lens . State whether the image is upright or inverted, and determine the overall magnification. q3=? M=? The image is  ---Location--- inverted upright , and the...
An object is placed 31.5 cm from a +5.0-D lens. A spherical mirror with focal length...
An object is placed 31.5 cm from a +5.0-D lens. A spherical mirror with focal length 25 cm is placed 75 cm behind the lens. Note that the mirror reflects light back through the lens. Find the distance from original object to the final image, measured from the object toward the lens. Enter negative value if the object is between the image and the mirror and positive value otherwise.
A two lens magnifying system uses lenses of focal lengths 2.5 and 9.5 cm for the...
A two lens magnifying system uses lenses of focal lengths 2.5 and 9.5 cm for the objective and eyepiece, respectively. The two lenses are positioned 23 cm apart. An object for study is placed 3.0 cm in front of the objective lens. Find the magnification of the final image.
A 1.0-cm-tall object is 100 cm from a screen. A diverging lens with focal length -20...
A 1.0-cm-tall object is 100 cm from a screen. A diverging lens with focal length -20 cm is 20 cm in front of the object. a. What is the focal length of a second lens that will produce a well-focused, 2.0-cm-tall image on the screen? b. What is the distance from the screen of the second lens?
A diverging and converging lens with equal focal lengths of f = 0.5 m are placed...
A diverging and converging lens with equal focal lengths of f = 0.5 m are placed so that their "fake" focal points overlap. If you place an object 2 m to the left of the left most lens, where is the final image formed? What are its attributes? Draw the ray diagram to double-check your work.Suppose you are allowed to use these the same type of lenses with what ever focal lengthyou need. What type of devise you can build...
A thin lens has a focal length f = 1.0 x 10^2 cm. In order to...
A thin lens has a focal length f = 1.0 x 10^2 cm. In order to ensure that the image is the same size as the object, where should the object be placed? That is, what is the object distance s? Question 1 options: 1.0 x 10^2 cm 3.4 x 10^2 cm 50. cm 2.0 x 10^2 cm 4.0 x 10^2 cm An electron is moving in the positive x direction at a rate 3.0 x 10^5 m/s. A magnetic...
Q3- lens A to be a convex lens with a focal length of 20 cm, lens...
Q3- lens A to be a convex lens with a focal length of 20 cm, lens B is concave lens with focal length of 15 cm a- Calculate and compare the optical powers for lenses A, and B b- Find the combined optical power if the two lenses were cascaded behind each other Q4- Use ray tracing or Lens equation to find the image of an object 1 cm high located at 2 cm away from a convex lens that...
A concave spherical mirror with a focal length of 12 cm faces a plane mirror with...
A concave spherical mirror with a focal length of 12 cm faces a plane mirror with the optical axis of the spherical mirror perpendicular to the plane mirror. A small object is placed at point P on the optical axis, 11 cm from the plane mirror and 29 cm from the vertex of the spherical mirror. Find the distance from the plane mirror to the three nearest images. (Enter your answers from smallest to largest.) first nearest image second nearest...
A diverging lens of focal length -12.5 cm is placed 40.0 cm from a converging lens...
A diverging lens of focal length -12.5 cm is placed 40.0 cm from a converging lens of unknown focal length.  A 15.2 cm tall erect object is placed 25.3 cm in front of the diverging lens which is to produce an image on a screen that is twice the size of the original object but inverted. A) Where should the screen be located to produce a clear image? Give the distance from the converging lens to the screen in cm. B)...
Lens 1, in a two-lens system, is converging with a focal length +15.0 cm and Lens...
Lens 1, in a two-lens system, is converging with a focal length +15.0 cm and Lens 2 is also converging, with a focal length of +5.0 cm. An object is placed 40.0 cm to the left of Lens 1, as shown. If the two lenses are separated by 30.0 cm, where is the final image in relation to Lens 2?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT