In: Advanced Math
a) Show that 6, 28, 496, 8128, and 33550336 are perfect numbers (recall, according to the note: n is said to be perfect if σ(n) = 2n).
b) Recall that prime numbers of the form Mn := 2n − 1 are called the Mersenne primes. For those nsuch that Mn := 2n − 1 is prime,
prove that the number Pn := 1/2 (Mn + 1)Mn= 2(n-1)(2n − 1) is a perfect number (Note: for P1 = 6, P2 = 28, P3 = 496, P4 = 8128, P5 = 33550336 which recover the perfect numbers in (a)).
c) Let P = q · 2(n-1) where q is an odd prime. Prove that if P is a perfect number, then q = 2n − 1, i.e. all perfect number of the form P = q · 2(n-1) is of the form 2(n-1) (2n − 1).
Printing Mistake in the questions of (b),(c). I know the definition of Mersenne Prime .Correcting it I give the solutions.