Question

In: Physics

In the worst-case scenario, you've got an elevator with a mass 2420 kg moving a speed...

In the worst-case scenario, you've got an elevator with a mass 2420 kg moving a speed 4.29 m/s when it reaches the bottom of the shaft. Your first idea is to put a spring, with spring constant 1.068×104 N/m, at the bottom of the shaft.

a)Assuming the spring obeys Hooke's Law perfectly, how far will it compress to stop the elevator?

b)When the elevator comes to a stop with the spring compressed, what is the net force on the elevator?

c)It's a bit unreasonable to put a spring large enough to compresses this far under every elevator. So you decide to add a clamping mechanism to the walls around the spring, which will provide a friction force of magnitude 1.74×104 N

Now how far does the spring get compressed?

Express your answer with appropriate units.

Solutions

Expert Solution


Related Solutions

A softball of mass 0.220 kg that is moving with a speed of 8.0 m/s (in...
A softball of mass 0.220 kg that is moving with a speed of 8.0 m/s (in the positive direction) collides head-on and elastically with another ball initially at rest. Afterward the incoming softball bounces backward with a speed of 6.4 m/s. (a) Calculate the velocity of the target ball after the collision. (b) Calculate the mass of the target ball
A truck with a mass of 1350 kg and moving with a speed of 12.0 m/s...
A truck with a mass of 1350 kg and moving with a speed of 12.0 m/s rear-ends a 821-kg car stopped at an intersection. The collision is approximately elastic since the car is in neutral, the brakes are off, the metal bumpers line up well and do not get damaged. Find the speed of both vehicles after the collision. vcar = ___________________ m/s vtruck = ____________________ m/s
A car of mass 495 kg is moving 32.0° North of East at a speed of...
A car of mass 495 kg is moving 32.0° North of East at a speed of 19.6 m/s. What is the magnitude of the momentum of the car? (magnitude - how big is it? ignore direction) Momentum is a vector quantity, and just like any other vector quantity, we can take components. What is the East-West component of the momentum of the car? A truck of mass 2.74×103 kg is moving due East at a speed of 4.30 m/s. What...
A block of mass m= 5.00-kg is moving to the right with a speed of v=...
A block of mass m= 5.00-kg is moving to the right with a speed of v= 2.00 m/son a horizontal,frictionless surface. The block encounters a relaxed(that is, neither compressed nor extended)spring with spring constant k= 2,000.00 N/m. a.What is the kinetic energy of the block before hitting the spring? b.What is the kinetic energy of the block when the spring is at maximum compression? c.How much energy is stored in the spring at maximum compression? d.How far does the spring...
A block of mass m1 = 2.20 kg initially moving to the right with a speed...
A block of mass m1 = 2.20 kg initially moving to the right with a speed of 3.10 m/s on a frictionless, horizontal track collides with a spring attached to a second block of mass m2 = 4.7 kg initially moving to the left with a speed of 1.5 m/s.The spring constant is 528 N/m. What if m1 is initially moving at 3.6 m/s while m2 is initially at rest? (a) Find the maximum spring compression in this case. x...
A blue car with mass mc = 512 kg is moving east with a speed of...
A blue car with mass mc = 512 kg is moving east with a speed of vc = 17 m/s and collides with a purple truck with mass mt = 1397 kg that is moving south with an unknown speed. The two collide and lock together after the collision moving at an angle of θ = 56° South of East 1.What is the magnitude of the initial momentum of the car 2.What is the magnitude of the initial momentum of...
A block of mass m1 = 2.3 kg initially moving to the right with a speed...
A block of mass m1 = 2.3 kg initially moving to the right with a speed of 4.8 m/s on a frictionless, horizontal track collides with a spring attached to a second block of mass m2 = 3.5 kg initially moving to the left with a speed of 2.7 m/s. The spring constant is 580N/m. What if m1 is initially moving at 3.6 m/s while m2 is initially at rest? (a) Find the maximum spring compression in this case. x...
1. A toy car of mass 2.0 kg moving to the right with a speed of...
1. A toy car of mass 2.0 kg moving to the right with a speed of 8.0 m/s collides perfectly inelastically with another toy car of mass 3.0 kg that is moving to the left with a speed of 2.0 m/s. Find the magnitude and the direction of the velocity of the system Immediately after the collision. 2. In an elastic collision of two objects, a. momentum is not conserved. b. momentum is conserved, and the kinetic energy after the...
A block of mass m1 = 2.9 kg initially moving to the right with a speed...
A block of mass m1 = 2.9 kg initially moving to the right with a speed of 4.3 m/s on a frictionless, horizontal track collides with a spring attached to a second block of mass m2 = 5 kg initially moving to the left with a speed of 2.8 m/s as shown in figure (a). The spring constant is 572 N/m. What if m1 is initially moving at 2.2 m/s while m2 is initially at rest? (a) Find the maximum...
A block of mass m1 = 1.60 kg initially moving to the right with a speed...
A block of mass m1 = 1.60 kg initially moving to the right with a speed of 4.00 m / s on a track horizontal without friction and collides with a spring attached to a second block of mass m2 = 2.10 kg that initially moves to the left with a speed of 2.50 m / s. The spring constant is 600 N / m. a) Find the speeds of the two blocks after the collision. b) During the collision,...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT