Question

In: Physics

Problem: Car 1 (1000 kg) is traveling east at 8.0 m/s. Car 2 (2500 kg) is...

Problem: Car 1 (1000 kg) is traveling east at 8.0 m/s. Car 2 (2500 kg) is traveling west at 4.5 m/s. These two cars have a head-on collision. Car 2 recoils at 2.0 m/s.

a) what is given/known?

b) What is the linear momentum of Car 1 BEFORE the collision?

c) What is the linear momentum of Car 2 BEFORE the collision?

d) What is the linear momentum of the system ( car 1 and car 2) BEFORE the collision:

e) What is the linear momentum of the system (car 1 and car 2) AFTER the collision:

f) What is the linear momentum of Car 2 AFTER the collision:

g) What is the linear momentum of Car 1 AFTER the collision:

h) What is the velocity of car 1 after the collision?

i) is linear momentum of the system conserved in this collision?

j) is the kinetic energy of the system conserved in this collision? (show this by finding the kinetic energy before and after the collision)

k) What type of collision is this? How can you tell?

L) what is the change in the linear momentum of car 1 (a.k.a. the impulse)

m) what is the change in the linear momentum of car 2

n) if the contact time between the cars during the collision is 0.35 s, what is the average force experienced by car 1 on car 2?

o)if the contact time between the cars during the collision is 0.35 s, what is the average force experienced by car 2 on car 1?

p) compare the average forces and impulse values for car 1 and car 2 (e.g. divide average F for car 1 by average f for car 2)

q) Which of newtons laws is demonstrated by these comparisons above?

Solutions

Expert Solution


Related Solutions

A green car with a mass 1000 kg is traveling east at 40 m/s. Simultaneously, a...
A green car with a mass 1000 kg is traveling east at 40 m/s. Simultaneously, a yellow car with 1500 kg is traveling north at 30 m/s. They collide in a perfectly inelastic collision such that there is no rotation. A)during the collision which car experiences a greater force? Why? B) what is the momentum of each car before the collision? C) what is the magnitude of the momentum of the two combined cars after the collision? D)what is the...
A 900-kg car traveling east at 20.0 m/s collides with a 750-kg car traveling north at...
A 900-kg car traveling east at 20.0 m/s collides with a 750-kg car traveling north at 15.o m/s. The cars stick together. Assume that any otherunbalanced forces are negligible. (Draw Diagrams) (a) What is the speed of the wreckage just after the collision? (b) In what directions does the wreckage move just after the collision? (c) What is the total Kinetick Energy before the collision? (d) What is the total Kinetic Energy after?
A 900-kg car traveling east at 20.0 m/s collides with a 750-kg car traveling north at...
A 900-kg car traveling east at 20.0 m/s collides with a 750-kg car traveling north at 15.0 m/s. The cars stick together. Assume that any other unbalanced forces are negligible. (Draw Diagrams) (a) What is the speed of the wreckage just after the collision? (b) In what direction does the wreckage move just after the collision? (c) What is the total Kinetic Energy before the collision? (d) What is the total Kinetic Energy after?
A 1000 kg car traveling 60° south from east at 30 m/s collides with a 3000...
A 1000 kg car traveling 60° south from east at 30 m/s collides with a 3000 kg truck traveling north at 20 m/s. The cars stick together after the collision. a) Is the momentum of the tr uck conserved before and after the collision? Why? b) Is the momentum of the car and tr uck together conserved before and after the collision? Why? c) Draw the velocity vector for the car before collision and write down the x and y...
A 1000. kg remote-controlled stunt car traveling at 17.0 m/s north collides with a 900. kg...
A 1000. kg remote-controlled stunt car traveling at 17.0 m/s north collides with a 900. kg remote-controlled stunt car traveling at 18.0 m/s east. What is the speed of the entangled cars immediately after the collision? 7.2 m/s 7.7 m/s 10.2 m/s 12.4 m/s
A 2290 kg car traveling at 11.7 m/s collides with a 2620 kg car that is...
A 2290 kg car traveling at 11.7 m/s collides with a 2620 kg car that is initially at rest at the stoplight. The cars stick together and move 3.30 m before friction causes them to stop. Determine the coefficient of kinetic friction betwen the cars and the road, assuming that the negative acceleration is constant and that all wheels on both cars lock at the time of impact.
A 0.20-kg softball is traveling at a velocity of 20 m/s to the east relative to...
A 0.20-kg softball is traveling at a velocity of 20 m/s to the east relative to Earth. It collides head-on with a 0.40-kg rubber ball traveling at a velocity of 10 m/s to the west. The system's kinetic energy, as measured from the Earth reference frame, decreases by 19 % because of the collision. Call the east the +x direction. a) What is the x-component of the final velocity of the softball? b) What is the x-component of the final...
A 1700 kg car moving east at 17 m/s collides with a 1800 kg car moving...
A 1700 kg car moving east at 17 m/s collides with a 1800 kg car moving south at 20 m/s, and the two cars stick together. Consider east the positive x-direction and north the positive y-direction. a) What is the x-component of the initial momentum before the collision? ( -7100 kg·m/s, 64900 kg·m/s or 28900 kg·m/s) b) What is the y-component of the initial momentum before the collision? (-36000 kg·m/s, -7100 kg·m/s, 64900 kg·m/s or 36000 kg·m/s) c) What is...
A truck 'A' of mass 1700 kg traveling east at a speed of 24 m/s crashes...
A truck 'A' of mass 1700 kg traveling east at a speed of 24 m/s crashes into a smaller, 1100 kg parked wagon 'B'. The two vehicles remain joined together after the collision. What is the velocity of the wreck immediately after the collision? Neglect friction against the road. fAns: 14.6 m/s]
A 1410-kg car moving east at 17.0 m/s collides with a 1880-kg car moving south at...
A 1410-kg car moving east at 17.0 m/s collides with a 1880-kg car moving south at 15.0 m/s, and the two cars connect together. a) What is the magnitude of the velocity of the cars right after the collision? (m/s) b) What is the direction of the cars right after the collision? Enter the angle in degrees where positive indicates north of east and negative indicates south of east. (°) c) How much kinetic energy was converted to another form...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT