Question

In: Civil Engineering

*a*s*d*f*g*AGGREGATE EXPERIMENTS QUESTION 1: Grain distribution in aggregates; is calculated a) By which experiment (with procedure...

*a*s*d*f*g*AGGREGATE EXPERIMENTS

QUESTION 1: Grain distribution in aggregates; is calculated
a) By which experiment (with procedure and experiment instruments)?
b) How (explain calculations, show on the table)?

Solutions

Expert Solution

if you have any doubts please ask me........ please upvote me........ tq........ have a good day ?


Related Solutions

**a**s*****d**f***CEMENT EXPERIMENTS QUESTION 1: The strength class of the cement is determined by which experiment, how...
**a**s*****d**f***CEMENT EXPERIMENTS QUESTION 1: The strength class of the cement is determined by which experiment, how is it calculated ? (Materials, experiment instruments, preparation and procedure, experiments and calculations)
(a) (f ∘ g)(3) (b) g(f(2)) (c) g(f(5)) (d) (f ∘ g)(−3) (e) (g ∘ f)(−1) (f) f(g(−1))
(a)    (f ∘ g)(3) (b)    g(f(2)) (c)    g(f(5)) (d)    (f ∘ g)(−3) (e)    (g ∘ f)(−1) (f)    f(g(−1))  
Use the table for the question(s) below. Combination A B C D E F G Vaccine...
Use the table for the question(s) below. Combination A B C D E F G Vaccine doses (millions) 6 5 4 3 2 1 0 Guns 0 10,000 19,000 24,000 28,000 30,000 31,000 In the table above, the opportunity cost of vaccines remains constant as more vaccines are produced. remains constant as more guns are produced. increases as more guns are produced. increases as more vaccines are produced. decreases as more vaccines are produced. If the economy is currently producing...
1. Let g(s) = √ s. Find a simple function f so that f(g(s)) = 0....
1. Let g(s) = √ s. Find a simple function f so that f(g(s)) = 0. Hint: see Methods of computing square roots on Wikipedia. Use Newton’s method to estimate √ 2. Start with 3 different (and interesting) initial values of your choice and report the number of iterations it takes to obtain an accuracy of at least 4 digits. In python.
Experiment: Extraction to seperate benzoic acid and naphthalene. Procedure- Place 2 g of a 1:1 (by...
Experiment: Extraction to seperate benzoic acid and naphthalene. Procedure- Place 2 g of a 1:1 (by weight) mixture of benzoic acid and naphthalene in a small beaker; record the exact mass of the mixture in your notebook. Add 35 mL of dichloromethane to the beaker and stir until the solid mixture has completely dissolved. Carefully pour the solution into a separatory funnel. Add 20 mL of 3.0 M NaOH to the separatory funnel, stopper it, and shake the mixture with...
1.Following the general procedure described in this experiment , a student synthesized 6.895 g of barium...
1.Following the general procedure described in this experiment , a student synthesized 6.895 g of barium idoate monhydrate, Ba(IO3)2 . H2), by adding 30.00 mL of 5.912x10^(-1) M barium nitrate, Ba(NO3)2, to 50.00 mL of 9.004x10^(-1) M sodium idoate, NaIO3. (A) Write the chemical equation for the reaction of solutions of barium nitrate and sodium iodate. (B) Calculate the precent yield of barium iodate monohydrate the student obtaned in this experiment. When reviewing the procedure and calculations, the student discovered...
Consider the experiments. Experiment 1: A study is done to determine which of two fuel mixtures...
Consider the experiments. Experiment 1: A study is done to determine which of two fuel mixtures allows a rocket to travel farther over a period of time. Rocket A, which requires additional equipment to keep it stable, is used to test one fuel mixture, and rocket B is used to test the other. Both rockets are identical aside from their mass. The results indicate that rocket B traveled farther than rocket A over the same period of time. Experiment 2:...
Let f(t) =t^2−1 and g(t) =e^t. (a) Graph f(g(t)) and g(f(t)). (b) Which is larger,f(g(5)) or...
Let f(t) =t^2−1 and g(t) =e^t. (a) Graph f(g(t)) and g(f(t)). (b) Which is larger,f(g(5)) or g(f(5))? Justify your answer. (c) Which is larger, (f(g(5)))′or g(f(5))′? Justify your answer.
proof: L t^(n+1)*f(t)=(-1)^(n+1)*(d^(n+1)/ds^(n+1))*F(s)
proof: L t^(n+1)*f(t)=(-1)^(n+1)*(d^(n+1)/ds^(n+1))*F(s)
1. At SATP, which reaction below is spontaneous? 2NaF(s)+Cl2(g)→2NaCl(s)+F2(g) 2KCl(s)+I2(g)→2KI(s)+Cl2(g) 2F(g)→F2(g) O2(g)→2O(g) 2. For which of...
1. At SATP, which reaction below is spontaneous? 2NaF(s)+Cl2(g)→2NaCl(s)+F2(g) 2KCl(s)+I2(g)→2KI(s)+Cl2(g) 2F(g)→F2(g) O2(g)→2O(g) 2. For which of these is there an increase in entropy? H2O(l)+CO2(g)→H2CO3(aq) 2Na3PO4(aq)+3CaCl2(aq)→6NaCl(aq)+Ca3(PO4)2(s) Ba(OH)2(s)+2NH4Cl(s)→BaCl2(aq)+2NH3(g)+2H2O(l) H2O(g)→H2O(s) 3. Calculate ∆Sº for the reaction below: N2(g)+2O2(g)⇄2NO2(g) where ∆Sº for N2(g), O2(g), & NO2(g), respectively, is 191.5, 205.0, & 240.5 J/mol-K -156.0 J/K 156.0 J/K 120.5 J/K -120.5 J/K 4. ∆Svap for H2O at its boiling point and 1 atm is (∆Hvap of H2O = 40.7kJ/mol) 109 J/K 40,700 J/K 407 J/K...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT