In: Statistics and Probability
Using the below question and values how do you calculate the
standard deviation without using a calculator (by hand) of
(s1^2/n1+s2^2/n2) with the standard deviation answer being 1.4938
and 1.1361
/sqrt(1.4938^2/10 + 1.1361^2/10)
Choose two competing store and compare the prices of 10 items at
both stores. Preform a two-sample hypothesis test to try an prove
if one store is more expensive than the other based on your sample.
Store A item #1-$5.49, #2 $3.77, #3 $0.87, #4 $3.29, #5 $4.79, #6
$1.99, #7 $1.33, #8 $2.19, #9 $2.79, #10 $3.99 Store B items #1
$4.59, #2 3.99, #3 $1.79,  #4 $2.99, #5 $4.59, # $1.79,
#7 $1.99, #8 $2.19, #9 $2.79, #10 $3.99
Hypothesis:
H0 ; mu1= mu2
HA: mu 1 > mu2
test statistics:
t = (x1-x2)/sqrt(s1^2/n1+s2^2/n2)
= (3.05 - 3.07)/sqrt(1.4938^2/10 + 1.1361^2/10)
= -0.0337
p value = .4872
FAil to reject the H0
std dev of sample 1
| X | (X - X̄)² | 
| 5.49 | 5.954 | 
| 3.77 | 0.518 | 
| 0.87 | 4.752 | 
| 3.29 | 0.058 | 
| 4.79 | 3.028 | 
| 1.99 | 1.124 | 
| 1.33 | 2.958 | 
| 2.19 | 0.7 | 
| 2.79 | 0.068 | 
| 3.99 | 0.884 | 
mean =    ΣX/n =    30.500  
/   10.000   =   3.050
          
           
sample variance =    Σ(X - X̄)²/(n-1)=  
20.0824   /   9.0000   =  
2.2314
          
           
sample std dev =   √ [ Σ(X - X̄)²/(n-1)] =  
√   2.2314   =      
1.4938
------------------------------------------------------
std dev of sample 2
| X | (X - X̄)² | 
| 4.59 | 2.310 | 
| 3.99 | 0.846 | 
| 1.79 | 1.638 | 
| 2.99 | 0.006 | 
| 4.59 | 2.310 | 
| 1.79 | 1.638 | 
| 1.99 | 1.166 | 
| 2.19 | 0.8 | 
| 2.79 | 0.078 | 
| 3.99 | 0.846 | 
mean =    ΣX/n =    30.700  
/   10.000   =   3.070
          
           
sample variance =    Σ(X - X̄)²/(n-1)=  
11.6160   /   9.0000   =  
1.2907
          
           
sample std dev =   √ [ Σ(X - X̄)²/(n-1)] =  
√   1.2907   =      
1.1361
-----------------------------------------------------
H0 ; mu1= mu2
HA: mu 1 > mu2  
std error , SE = √(s1²/n1+s2²/n2) = √(1.4938^2/10 + 1.1361^2/10) = 0.5935
t = (x1-x2)√(s1^2/n1+s2^2/n2) = (x1-x2)√std error
= (3.05 - 3.07)/√0.5935
= -0.0337
DF = min(n1-1 , n2-1 )=   9
p-value=0.5131
p-value >α, so
FAil to reject the H0