In: Statistics and Probability
Using the below question and values how do you calculate the
standard deviation without using a calculator (by hand) of
(s1^2/n1+s2^2/n2) with the standard deviation answer being 1.4938
and 1.1361
/sqrt(1.4938^2/10 + 1.1361^2/10)
Choose two competing store and compare the prices of 10 items at
both stores. Preform a two-sample hypothesis test to try an prove
if one store is more expensive than the other based on your sample.
Store A item #1-$5.49, #2 $3.77, #3 $0.87, #4 $3.29, #5 $4.79, #6
$1.99, #7 $1.33, #8 $2.19, #9 $2.79, #10 $3.99 Store B items #1
$4.59, #2 3.99, #3 $1.79, #4 $2.99, #5 $4.59, # $1.79,
#7 $1.99, #8 $2.19, #9 $2.79, #10 $3.99
Hypothesis:
H0 ; mu1= mu2
HA: mu 1 > mu2
test statistics:
t = (x1-x2)/sqrt(s1^2/n1+s2^2/n2)
= (3.05 - 3.07)/sqrt(1.4938^2/10 + 1.1361^2/10)
= -0.0337
p value = .4872
FAil to reject the H0
std dev of sample 1
X | (X - X̄)² |
5.49 | 5.954 |
3.77 | 0.518 |
0.87 | 4.752 |
3.29 | 0.058 |
4.79 | 3.028 |
1.99 | 1.124 |
1.33 | 2.958 |
2.19 | 0.7 |
2.79 | 0.068 |
3.99 | 0.884 |
mean = ΣX/n = 30.500
/ 10.000 = 3.050
sample variance = Σ(X - X̄)²/(n-1)=
20.0824 / 9.0000 =
2.2314
sample std dev = √ [ Σ(X - X̄)²/(n-1)] =
√ 2.2314 =
1.4938
------------------------------------------------------
std dev of sample 2
X | (X - X̄)² |
4.59 | 2.310 |
3.99 | 0.846 |
1.79 | 1.638 |
2.99 | 0.006 |
4.59 | 2.310 |
1.79 | 1.638 |
1.99 | 1.166 |
2.19 | 0.8 |
2.79 | 0.078 |
3.99 | 0.846 |
mean = ΣX/n = 30.700
/ 10.000 = 3.070
sample variance = Σ(X - X̄)²/(n-1)=
11.6160 / 9.0000 =
1.2907
sample std dev = √ [ Σ(X - X̄)²/(n-1)] =
√ 1.2907 =
1.1361
-----------------------------------------------------
H0 ; mu1= mu2
HA: mu 1 > mu2
std error , SE = √(s1²/n1+s2²/n2) = √(1.4938^2/10 + 1.1361^2/10) = 0.5935
t = (x1-x2)√(s1^2/n1+s2^2/n2) = (x1-x2)√std error
= (3.05 - 3.07)/√0.5935
= -0.0337
DF = min(n1-1 , n2-1 )= 9
p-value=0.5131
p-value >α, so
FAil to reject the H0