In: Finance
What is the annual capital gains yield expected over the next year for a 15 year bond with 9% coupon rate paying the coupons every six months and selling at $1,082 (enter answer as a percentage)?
We need to find the YTM of the bond which is the done as shown below using irr formula
Bond (Annual payment) |
|||||||||||||||||||||||||||||||
Years | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
Price | 1082 | ||||||||||||||||||||||||||||||
Coupon payment |
45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | |
Par value | 1000 | ||||||||||||||||||||||||||||||
Total cashflows | -1082 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 1045 |
IRR | 4.024% | ||||||||||||||||||||||||||||||
YTM=2*IRR (semi annual bonds) | 8.05% |
Using this YTM we need to find the price of the bond after 1 year as below; ( total 28 terms as 1 year already completed)
Bond (Annual payment) |
|||||||||||||||||||||||||||||
Years | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 |
Coupon payment |
45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | |
Par value | 1000 | ||||||||||||||||||||||||||||
Total cashflows | -1082 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 | 45 |
IRR | 4.024% | ||||||||||||||||||||||||||||
Price/NPV | 1079.03 |
Annualized capital gain =(price after 1 year-price initial)/price initial
=(1079.03-1082)/1082 = -.27%