In: Statistics and Probability
The mean oull-off force of an adhesive used in manufacturing a connector for an automotive engine application should be at least 75 pounds. This adhesive will be used unless there is strong evidence that the pull-off force does not meet this requirement. A test of an appropiate device is to be conducted with a sample size n = 30 and a = 0.01. Assume the standard deviation is known.
a) If the true standard deviation s = 1, what is the risk that the adhesive will be judged acceptable when the true mean pull-off force is only 73pounds?
b)What sample size is required to give a 90% chance of detecting that the true mean pull-off force is only 72 pounds when s =1?
a)
true mean ,    µ =    73
      
hypothesis mean,   µo =    75
significance level,   α =    0.01
sample size,   n =   30
std dev,   σ =    1
      
δ=   µ - µo =    -2
      
std error of mean,   σx = σ/√n =    0.1826
Zα =       -2.3263   (left
tail test)  
          
   
We will fail to reject the null (commit a Type II error) if we get
a Z statistic >      
        -2.3263
this Z-critical value corresponds to X critical value( X critical),
such that          
   
          
   
       (x̄ - µo)/σx ≥ Zα  
   
       x̄ ≥ Zα*σx + µo  
   
       x̄ ≥   
74.575   (acceptance region)
          
   
now, type II error is ,ß =    P( x̄ ≥   
74.575   given that µ =   73
          
   
   = P ( Z > (x̄-true mean)/σx )   
       
   = P ( Z >    8.628  
)      =   0.00
b)
True mean,   µ =    72  
hypothesis mean,   µo =    75  
          
Level of Significance ,    α =   
0.01  
std dev =    σ =    1  
power =    1-ß =    0.9  
ß=       0.1  
δ=   µ - µo =    -3  
          
Z ( α ) =       2.3263   [excel
function: =normsinv(α)
          
Z (ß) =        1.2816   [excel
function: =normsinv(ß)
          
sample size needed =    n = ( σ [ Z(ß)+Z(α) ] / δ )² =
   1.4463  
          
so, sample size =       
2.000