If the function u (x, y) is a harmonic conjugate of v (x, y) prove that the curves u (x, y) = st. and v (x, y) = stations. are orthogonal to each other. These curves are called level curves. Now consider the function f (z) = 1 / z
defined throughout the complex plane except the beginning of the axes. Draw them
level curves for the real and imaginary part of this function
and notice that they are two...