Question

In: Advanced Math

Let ?V be the set of vectors in ?2R2 with the following definition of addition and...

Let ?V be the set of vectors in ?2R2 with the following definition of addition and scalar multiplication:
Addition: [?1?2]⊕[?1?2]=[0?2+?2][x1x2]⊕[y1y2]=[0x2+y2]
Scalar Multiplication: ?⊙[?1?2]=[0??2]α⊙[x1x2]=[0αx2]
Determine which of the Vector Space Axioms are satisfied.

A1. ?⊕?=?⊕?x⊕y=y⊕x for any ?x and ?y in ?V
? YES NO

A2. (?⊕?)⊕?=?⊕(?⊕?)(x⊕y)⊕z=x⊕(y⊕z) for any ?,?x,y and ?z in ?V
? YES NO

A3. There exists an element 00 in ?V such that ?⊕0=?x⊕0=x for each ?∈?x∈V
? YES NO

A4. For each ?∈?x∈V, there exists an element  −?−x in ?V such that ?⊕(−?)=0x⊕(−x)=0
? YES NO

A5.  ?⊙(?⊕?)=(?⊙?)⊕(?⊙?)α⊙(x⊕y)=(α⊙x)⊕(α⊙y) for each scalar ?α and any ?x and ?y ?V
? YES NO

A6. (?+?)⊙?=(?⊙?)⊕(?⊙?)(α+β)⊙x=(α⊙x)⊕(β⊙x) for any scalars ?α and  ?β and any ?∈?x∈V
? YES NO

A7. (??)⊙?=?⊙(?⊙?)(αβ)⊙x=α⊙(β⊙x) for any scalars ?α and  ?β and any ?∈?x∈V
? YES NO

A8. 1⊙?=?1⊙x=x for all ?∈?x∈V
? YES NO

Solutions

Expert Solution


Related Solutions

Determine whether the set with the definition of addition of vectors and scalar multiplication is a...
Determine whether the set with the definition of addition of vectors and scalar multiplication is a vector space. If it is, demonstrate algebraically that it satisfies the 8 vector axioms. If it's not, identify and show algebraically every axioms which is violated. Assume the usual addition and scalar multiplication if it's not identified. V = R^2 , < X1 , X2 > + < Y1 , Y2 > = < X1 + Y1 , 0> c< X1 , X2 >...
Determine whether the set with the definition of addition of vectors and scalar multiplication is a...
Determine whether the set with the definition of addition of vectors and scalar multiplication is a vector space. If it is, demonstrate algebraically that it satisfies the 8 vector axioms. If it's not, identify and show algebraically every axioms which is violated. Assume the usual addition and scalar multiplication if it's not defined. V = { (x1, x2, x3) ∈ R^3 | x1 > or equal to 0, x2 > or equal to 0, x3 > or equal to 0}
Determine whether the set with the definition of addition of vectors and scalar multiplication is a...
Determine whether the set with the definition of addition of vectors and scalar multiplication is a vector space. If it is, demonstrate algebraically that it satisfies the 8 vector axioms. If it's not, identify and show algebraically every axioms which is violated. Assume the usual addition and scalar multiplication if it's not defined. V = { f : R --> R | f(1) = 0 }
Determine whether the set with the definition of addition of vectors and scalar multiplication is a...
Determine whether the set with the definition of addition of vectors and scalar multiplication is a vector space. If it is, demonstrate algebraically that it satisfies the 8 vector axioms. If it's not, identify and show algebraically every axioms which is violated. Assume the usual addition and scalar multiplication if it's not defined. V = {all polynomials with real coefficients with degree > or equal to 3 and the zero polynomial}
Let V be the set of all ordered pairs of real numbers. Consider the following addition...
Let V be the set of all ordered pairs of real numbers. Consider the following addition and scalar multiplication operations V. Let u = (u1, u2) and v = (v1, v2). Show that V is not a vector space. • u ⊕ v = (u1 + v1 + 1, u2 + v2 + 1 ) • ku = (ku1 + k − 1, ku2 + k − 1) 1)Show that the zero vector is 0 = (−1, −1). 2)Find the...
2) Let v, w, and x be vectors in Rn. a) If v is the zero...
2) Let v, w, and x be vectors in Rn. a) If v is the zero vector, what geometric object represents all linear combinations of v? b) Same question as a), except now for a nonzero v. c) Same question as a) except now for nonzero vectors v and w (be care- ful!). d) Same question as a) except now for nonzero vectors v, w, and x (be extra careful!).
Which of the following sets are closed under addition? (i) The set of all vectors in...
Which of the following sets are closed under addition? (i) The set of all vectors in R2 of the form (a, b) where b = a2. (ii) The set of all 3 × 3 matrices that have the vector [3 -1 -1]T as an eigenvector. (iii) The set of all polynomials in P2 of the form a0 + a1 x + a2 x2 where a0 = a2. (A) (i) only (B) all of them (C) (ii) only (D) (i) and...
Which of the following sets are closed under addition? (i) The set of all vectors in...
Which of the following sets are closed under addition? (i) The set of all vectors in R2 of the form (a, b) where b = a. (ii) The set of all 3 × 3 matrices that have the vector [-1  3  -3]T as an eigenvector. (iii) The set of all polynomials in P2 of the form a0 + a1 x + a2 x2 where a0 = a22.
Which of the following sets are closed under addition? (i) The set of all vectors in...
Which of the following sets are closed under addition? (i) The set of all vectors in R2 of the form (a, b) where b = a. (ii) The set of all 2 × 2 matrices that have the vector [-2  -3]T as an eigenvector. (iii) The set of all polynomials in P2 of the form a0 + a1 x + a2 x2 where a0 = a22.
Let vectors u and v form a basis in some plane, in each of the following...
Let vectors u and v form a basis in some plane, in each of the following cases determine if the vectors e1 and e2 for a basis in this plane: a)e1=u+v e2=u-v b)e1=-u+2v e2=3u-6v substantiate your decision
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT