In: Math
Simulate the effect of the Price change if it will follow the following pattern for Type A. (build the 95% confidence interval) Type A (Price (million Dollar) =1.25 (20% probability); Price (million Dollar) =2.25 (40 % probability); Price (million Dollar) =3 (25 % probability); Price (million Dollar) =3.5 (15 % probability))
Solution
NOTE: Question does not specify the number of simulation runs. As an arbitrary measure, 50 runs are made just to demonstrate the process and interpretation of results for further inferences………...............................................…… (1)
Back-up Theory
100(1 - α) % Confidence Interval for μ, when σ is not known is: Xbar ± (tn- 1, α /2)s/√n …………………………….…… (2)where
Xbar = sample mean, tn – 1, α /2 = upper (α /2)% point of
t-distribution with (n - 1) degrees of freedom, s = sample standard deviation and n = sample size.
Now to work out the solution,
Preparatory Work
Assignment of Random Numbers
| 
 Price ($106)  | 
 Probability  | 
 Cumulative Probability  | 
 Assigned Random Numbers  | 
| 
 1.25  | 
 0.2  | 
 0.2  | 
 01 - 20  | 
| 
 2.25  | 
 0.4  | 
 0.6  | 
 21 - 60  | 
| 
 3  | 
 0.25  | 
 0.85  | 
 61 – 85  | 
| 
 3.5  | 
 0.15  | 
 1.00  | 
 86 - 00  | 
Random numbers used
Lines 10580–10594, columns 21–40, from
RAND Corporation - RAND's A Million Random Digits
73735 45963 78134 63873 02965 58303 90708 20025 98859 23851
27965 62394 33665 63570 64775 78428 81665 26440 20422 05720
Simulation Process
| 
 Run Number  | 
 Random Number  | 
 Price  | 
| 
 1  | 
 73  | 
 3.00  | 
| 
 2  | 
 73  | 
 3.00  | 
| 
 3  | 
 54  | 
 2.25  | 
| 
 4  | 
 59  | 
 2.25  | 
| 
 5  | 
 63  | 
 3.00  | 
| 
 6  | 
 78  | 
 3.00  | 
| 
 7  | 
 13  | 
 1.25  | 
| 
 8  | 
 46  | 
 2.25  | 
| 
 9  | 
 38  | 
 2.25  | 
| 
 10  | 
 73  | 
 3.00  | 
| 
 11  | 
 02  | 
 1.25  | 
| 
 12  | 
 96  | 
 3.5  | 
| 
 13  | 
 55  | 
 2.25  | 
| 
 14  | 
 83  | 
 3.00  | 
| 
 15  | 
 03  | 
 1.25  | 
| 
 16  | 
 90  | 
 3.5  | 
| 
 17  | 
 70  | 
 3.00  | 
| 
 18  | 
 82  | 
 3.00  | 
| 
 19  | 
 00  | 
 3.5  | 
| 
 20  | 
 25  | 
 2.25  | 
| 
 21  | 
 98  | 
 3.5  | 
| 
 22  | 
 85  | 
 3.00  | 
| 
 23  | 
 92  | 
 3.5  | 
| 
 24  | 
 38  | 
 2.25  | 
| 
 25  | 
 51  | 
 2.25  | 
| 
 26  | 
 27  | 
 2.25  | 
| 
 27  | 
 96  | 
 3.5  | 
| 
 28  | 
 56  | 
 2.25  | 
| 
 29  | 
 23  | 
 2.25  | 
| 
 30  | 
 94  | 
 3.5  | 
| 
 31  | 
 33  | 
 2.25  | 
| 
 32  | 
 66  | 
 3.00  | 
| 
 33  | 
 56  | 
 2.25  | 
| 
 34  | 
 35  | 
 2.25  | 
| 
 35  | 
 70  | 
 3.00  | 
| 
 36  | 
 64  | 
 3.00  | 
| 
 37  | 
 77  | 
 3.00  | 
| 
 38  | 
 57  | 
 2.25  | 
| 
 39  | 
 84  | 
 3.00  | 
| 
 40  | 
 28  | 
 2.25  | 
| 
 41  | 
 81  | 
 3.00  | 
| 
 42  | 
 66  | 
 3.00  | 
| 
 43  | 
 52  | 
 2.25  | 
| 
 44  | 
 64  | 
 3.00  | 
| 
 45  | 
 40  | 
 2.25  | 
| 
 46  | 
 20  | 
 1.25  | 
| 
 47  | 
 42  | 
 2.25  | 
| 
 48  | 
 20  | 
 1.25  | 
| 
 49  | 
 57  | 
 2.25  | 
| 
 50  | 
 20  | 
 1.25  | 
Frequency Distribution
| 
 Price  | 
 Frequency  | 
 Relative Frequency  | 
| 
 1.25  | 
 6  | 
 0.12  | 
| 
 2.25  | 
 20  | 
 0.40  | 
| 
 3.00  | 
 17  | 
 0.34  | 
| 
 3.50  | 
 7  | 
 0.14  | 
| 
 Total  | 
 50  | 
 1.00  | 
Relative frequencies are fairly close to the given probabilities.
Measures
Mean = 2.56
Standard deviation = 0.6656
Now, to get the solution to the asked question,
vide(1) under Back-up Theory,
95% Confidence Interval is:
2.56 ±0.1890
Lower bound: $2.37; Upper bound: $2.75 ANSWER
Details of calculations
| 
 Given  | 
 α =  | 
 0.05  | 
| 
 n =  | 
 50  | 
|
| 
 Xbar =  | 
 2.56  | 
|
| 
 
  | 
 s =  | 
 0.6654  | 
| 
 
  | 
 tα/2 =  | 
 2.009575  | 
| 
 95% CI for μ: 2.56 ± 0.18910458  | 
| 
 Lower Bound =  | 
 2.3709  | 
| 
 Upper Bound =  | 
 2.7491  | 
DONE