In: Math
Simulate the effect of the Price change if it will follow the following pattern for Type A. (build the 95% confidence interval) Type A (Price (million Dollar) =1.25 (20% probability); Price (million Dollar) =2.25 (40 % probability); Price (million Dollar) =3 (25 % probability); Price (million Dollar) =3.5 (15 % probability))
Solution
NOTE: Question does not specify the number of simulation runs. As an arbitrary measure, 50 runs are made just to demonstrate the process and interpretation of results for further inferences………...............................................…… (1)
Back-up Theory
100(1 - α) % Confidence Interval for μ, when σ is not known is: Xbar ± (tn- 1, α /2)s/√n …………………………….…… (2)where
Xbar = sample mean, tn – 1, α /2 = upper (α /2)% point of
t-distribution with (n - 1) degrees of freedom, s = sample standard deviation and n = sample size.
Now to work out the solution,
Preparatory Work
Assignment of Random Numbers
Price ($106) |
Probability |
Cumulative Probability |
Assigned Random Numbers |
1.25 |
0.2 |
0.2 |
01 - 20 |
2.25 |
0.4 |
0.6 |
21 - 60 |
3 |
0.25 |
0.85 |
61 – 85 |
3.5 |
0.15 |
1.00 |
86 - 00 |
Random numbers used
Lines 10580–10594, columns 21–40, from
RAND Corporation - RAND's A Million Random Digits
73735 45963 78134 63873 02965 58303 90708 20025 98859 23851
27965 62394 33665 63570 64775 78428 81665 26440 20422 05720
Simulation Process
Run Number |
Random Number |
Price |
1 |
73 |
3.00 |
2 |
73 |
3.00 |
3 |
54 |
2.25 |
4 |
59 |
2.25 |
5 |
63 |
3.00 |
6 |
78 |
3.00 |
7 |
13 |
1.25 |
8 |
46 |
2.25 |
9 |
38 |
2.25 |
10 |
73 |
3.00 |
11 |
02 |
1.25 |
12 |
96 |
3.5 |
13 |
55 |
2.25 |
14 |
83 |
3.00 |
15 |
03 |
1.25 |
16 |
90 |
3.5 |
17 |
70 |
3.00 |
18 |
82 |
3.00 |
19 |
00 |
3.5 |
20 |
25 |
2.25 |
21 |
98 |
3.5 |
22 |
85 |
3.00 |
23 |
92 |
3.5 |
24 |
38 |
2.25 |
25 |
51 |
2.25 |
26 |
27 |
2.25 |
27 |
96 |
3.5 |
28 |
56 |
2.25 |
29 |
23 |
2.25 |
30 |
94 |
3.5 |
31 |
33 |
2.25 |
32 |
66 |
3.00 |
33 |
56 |
2.25 |
34 |
35 |
2.25 |
35 |
70 |
3.00 |
36 |
64 |
3.00 |
37 |
77 |
3.00 |
38 |
57 |
2.25 |
39 |
84 |
3.00 |
40 |
28 |
2.25 |
41 |
81 |
3.00 |
42 |
66 |
3.00 |
43 |
52 |
2.25 |
44 |
64 |
3.00 |
45 |
40 |
2.25 |
46 |
20 |
1.25 |
47 |
42 |
2.25 |
48 |
20 |
1.25 |
49 |
57 |
2.25 |
50 |
20 |
1.25 |
Frequency Distribution
Price |
Frequency |
Relative Frequency |
1.25 |
6 |
0.12 |
2.25 |
20 |
0.40 |
3.00 |
17 |
0.34 |
3.50 |
7 |
0.14 |
Total |
50 |
1.00 |
Relative frequencies are fairly close to the given probabilities.
Measures
Mean = 2.56
Standard deviation = 0.6656
Now, to get the solution to the asked question,
vide(1) under Back-up Theory,
95% Confidence Interval is:
2.56 ±0.1890
Lower bound: $2.37; Upper bound: $2.75 ANSWER
Details of calculations
Given |
α = |
0.05 |
n = |
50 |
|
Xbar = |
2.56 |
|
|
s = |
0.6654 |
|
tα/2 = |
2.009575 |
95% CI for μ: 2.56 ± 0.18910458 |
Lower Bound = |
2.3709 |
Upper Bound = |
2.7491 |
DONE